Spaces:
Sleeping
Sleeping
File size: 1,012 Bytes
416fd50 0aaac91 79342f8 0aaac91 79342f8 3a09d95 081b87c 79342f8 7b3007d 0aaac91 79342f8 9468aa0 18f5172 081b87c 79342f8 416fd50 79342f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
# Check if the token is being accessed
hf_token = os.environ.get("HF_HOME", None)
# Load the model and tokenizer
model_name = "meta-llama/CodeLlama-7b-Python-hf"
model = AutoModelForCausalLM.from_pretrained(model_name, token=hf_token, torch_dtype="float16", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
def generate_code(prompt):
batch_size = 10
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512)
outputs = model.generate(inputs['input_ids'], max_length=512, num_return_sequences=batch_size)
code = tokenizer.decode(outputs[0], skip_special_tokens=True)
return code
# Set up the Gradio interface
demo = gr.Interface(fn=generate_code,
inputs="text",
outputs="text",
title="CodeLlama 7B Model",
description="Generate code with CodeLlama-7b-hf.").launch()
|