import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import os # Check if the token is being accessed hf_token = os.getenv("HF_HOME") if hf_token: print("Successfully retrieved Hugging Face token.") else: print("Failed to retrieve Hugging Face token.") # # Load the model and tokenizer # model_name = "meta-llama/CodeLlama-7b-hf" # model = AutoModelForCausalLM.from_pretrained(model_name) # tokenizer = AutoTokenizer.from_pretrained(model_name) # def generate_code(prompt): # inputs = tokenizer(prompt, return_tensors="pt") # outputs = model.generate(inputs["input_ids"], max_length=200) # code = tokenizer.decode(outputs[0], skip_special_tokens=True) # return code # # Set up the Gradio interface # demo = gr.Interface(fn=generate_code, # inputs="text", # outputs="text", # title="CodeLlama 7B Model", # description="Generate code with CodeLlama-7b-hf.").launch()