Spaces:
Sleeping
Sleeping
File size: 11,768 Bytes
458ecfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import asyncio
import queue
import random
import re
import uuid
from collections import defaultdict
from concurrent.futures import ThreadPoolExecutor
from copy import deepcopy
from threading import Thread
from typing import Dict, List
from lagent.actions import BaseAction
from lagent.schema import AgentMessage, AgentStatusCode
from .streaming import AsyncStreamingAgentForInternLM, StreamingAgentForInternLM
class SearcherAgent(StreamingAgentForInternLM):
def __init__(
self,
user_input_template: str = "{question}",
user_context_template: str = None,
**kwargs,
):
self.user_input_template = user_input_template
self.user_context_template = user_context_template
super().__init__(**kwargs)
def forward(
self,
question: str,
topic: str,
history: List[dict] = None,
session_id=0,
**kwargs,
):
message = [self.user_input_template.format(question=question, topic=topic)]
if history and self.user_context_template:
message = [self.user_context_template.format_map(item) for item in history] + message
message = "\n".join(message)
return super().forward(message, session_id=session_id, **kwargs)
class AsyncSearcherAgent(AsyncStreamingAgentForInternLM):
def __init__(
self,
user_input_template: str = "{question}",
user_context_template: str = None,
**kwargs,
):
self.user_input_template = user_input_template
self.user_context_template = user_context_template
super().__init__(**kwargs)
async def forward(
self,
question: str,
topic: str,
history: List[dict] = None,
session_id=0,
**kwargs,
):
message = [self.user_input_template.format(question=question, topic=topic)]
if history and self.user_context_template:
message = [self.user_context_template.format_map(item) for item in history] + message
message = "\n".join(message)
async for message in super().forward(message, session_id=session_id, **kwargs):
yield message
class WebSearchGraph:
is_async = False
SEARCHER_CONFIG = {}
_SEARCHER_LOOP = []
_SEARCHER_THREAD = []
def __init__(self):
self.nodes: Dict[str, Dict[str, str]] = {}
self.adjacency_list: Dict[str, List[dict]] = defaultdict(list)
self.future_to_query = dict()
self.searcher_resp_queue = queue.Queue()
self.executor = ThreadPoolExecutor(max_workers=10)
self.n_active_tasks = 0
def add_root_node(
self,
node_content: str,
node_name: str = "root",
):
"""添加起始节点
Args:
node_content (str): 节点内容
node_name (str, optional): 节点名称. Defaults to 'root'.
"""
self.nodes[node_name] = dict(content=node_content, type="root")
self.adjacency_list[node_name] = []
def add_node(
self,
node_name: str,
node_content: str,
):
"""添加搜索子问题节点
Args:
node_name (str): 节点名称
node_content (str): 子问题内容
Returns:
str: 返回搜索结果
"""
self.nodes[node_name] = dict(content=node_content, type="searcher")
self.adjacency_list[node_name] = []
parent_nodes = []
for start_node, adj in self.adjacency_list.items():
for neighbor in adj:
if (
node_name == neighbor
and start_node in self.nodes
and "response" in self.nodes[start_node]
):
parent_nodes.append(self.nodes[start_node])
parent_response = [
dict(question=node["content"], answer=node["response"]) for node in parent_nodes
]
if self.is_async:
async def _async_search_node_stream():
cfg = {
**self.SEARCHER_CONFIG,
"plugins": deepcopy(self.SEARCHER_CONFIG.get("plugins")),
}
agent, session_id = AsyncSearcherAgent(**cfg), random.randint(0, 999999)
searcher_message = AgentMessage(sender="SearcherAgent", content="")
try:
async for searcher_message in agent(
question=node_content,
topic=self.nodes["root"]["content"],
history=parent_response,
session_id=session_id,
):
self.nodes[node_name]["response"] = searcher_message.model_dump()
self.nodes[node_name]["memory"] = agent.state_dict(session_id=session_id)
self.nodes[node_name]["session_id"] = session_id
self.searcher_resp_queue.put((node_name, self.nodes[node_name], []))
self.searcher_resp_queue.put((None, None, None))
except Exception as exc:
self.searcher_resp_queue.put((exc, None, None))
self.future_to_query[
asyncio.run_coroutine_threadsafe(
_async_search_node_stream(), random.choice(self._SEARCHER_LOOP)
)
] = f"{node_name}-{node_content}"
# self.future_to_query[
# self.executor.submit(asyncio.run, _async_search_node_stream())
# ] = f"{node_name}-{node_content}"
else:
def _search_node_stream():
cfg = {
**self.SEARCHER_CONFIG,
"plugins": deepcopy(self.SEARCHER_CONFIG.get("plugins")),
}
agent, session_id = SearcherAgent(**cfg), random.randint(0, 999999)
searcher_message = AgentMessage(sender="SearcherAgent", content="")
try:
for searcher_message in agent(
question=node_content,
topic=self.nodes["root"]["content"],
history=parent_response,
session_id=session_id,
):
self.nodes[node_name]["response"] = searcher_message.model_dump()
self.nodes[node_name]["memory"] = agent.state_dict(session_id=session_id)
self.nodes[node_name]["session_id"] = session_id
self.searcher_resp_queue.put((node_name, self.nodes[node_name], []))
self.searcher_resp_queue.put((None, None, None))
except Exception as exc:
self.searcher_resp_queue.put((exc, None, None))
self.future_to_query[
self.executor.submit(_search_node_stream)
] = f"{node_name}-{node_content}"
self.n_active_tasks += 1
def add_response_node(self, node_name="response"):
"""添加回复节点
Args:
thought (str): 思考过程
node_name (str, optional): 节点名称. Defaults to 'response'.
"""
self.nodes[node_name] = dict(type="end")
self.searcher_resp_queue.put((node_name, self.nodes[node_name], []))
def add_edge(self, start_node: str, end_node: str):
"""添加边
Args:
start_node (str): 起始节点名称
end_node (str): 结束节点名称
"""
self.adjacency_list[start_node].append(dict(id=str(uuid.uuid4()), name=end_node, state=2))
self.searcher_resp_queue.put(
(start_node, self.nodes[start_node], self.adjacency_list[start_node])
)
def reset(self):
self.nodes = {}
self.adjacency_list = defaultdict(list)
def node(self, node_name: str) -> str:
return self.nodes[node_name].copy()
@classmethod
def start_loop(cls, n: int = 32):
if not cls.is_async:
raise RuntimeError("Event loop cannot be launched as `is_async` is disabled")
assert len(cls._SEARCHER_LOOP) == len(cls._SEARCHER_THREAD)
for i, (loop, thread) in enumerate(
zip(cls._SEARCHER_LOOP.copy(), cls._SEARCHER_THREAD.copy())
):
if not (loop.is_running() and thread.is_alive()):
cls._SEARCHER_LOOP.pop(i)
cls._SEARCHER_THREAD.pop(i)
while len(cls._SEARCHER_THREAD) < n:
def _start_loop():
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
cls._SEARCHER_LOOP.append(loop)
loop.run_forever()
thread = Thread(target=_start_loop, daemon=True)
thread.start()
cls._SEARCHER_THREAD.append(thread)
class ExecutionAction(BaseAction):
"""Tool used by MindSearch planner to execute graph node query."""
def run(self, command, local_dict, global_dict, stream_graph=False):
def extract_code(text: str) -> str:
text = re.sub(r"from ([\w.]+) import WebSearchGraph", "", text)
triple_match = re.search(r"```[^\n]*\n(.+?)```", text, re.DOTALL)
single_match = re.search(r"`([^`]*)`", text, re.DOTALL)
if triple_match:
return triple_match.group(1)
elif single_match:
return single_match.group(1)
return text
command = extract_code(command)
exec(command, global_dict, local_dict)
# 匹配所有 graph.node 中的内容
node_list = re.findall(r"graph.node\((.*?)\)", command)
graph: WebSearchGraph = local_dict["graph"]
while graph.n_active_tasks:
while not graph.searcher_resp_queue.empty():
node_name, _, _ = graph.searcher_resp_queue.get(timeout=60)
if isinstance(node_name, Exception):
raise node_name
if node_name is None:
graph.n_active_tasks -= 1
continue
if stream_graph:
for neighbors in graph.adjacency_list.values():
for neighbor in neighbors:
# state 1进行中,2未开始,3已结束
if not (
neighbor["name"] in graph.nodes
and "response" in graph.nodes[neighbor["name"]]
):
neighbor["state"] = 2
elif (
graph.nodes[neighbor["name"]]["response"]["stream_state"]
== AgentStatusCode.END
):
neighbor["state"] = 3
else:
neighbor["state"] = 1
if all(
"response" in node
for name, node in graph.nodes.items()
if name not in ["root", "response"]
):
yield AgentMessage(
sender=self.name,
content=dict(current_node=node_name),
formatted=dict(
node=deepcopy(graph.nodes),
adjacency_list=deepcopy(graph.adjacency_list),
),
stream_state=AgentStatusCode.STREAM_ING,
)
res = [graph.nodes[node.strip().strip('"').strip("'")] for node in node_list]
return res, graph.nodes, graph.adjacency_list
|