Spaces:
Sleeping
Sleeping
File size: 9,163 Bytes
458ecfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import json
import logging
import re
from copy import deepcopy
from typing import Dict, Tuple
from lagent.schema import AgentMessage, AgentStatusCode, ModelStatusCode
from lagent.utils import GeneratorWithReturn
from .graph import ExecutionAction, WebSearchGraph
from .streaming import AsyncStreamingAgentForInternLM, StreamingAgentForInternLM
def _update_ref(ref: str, ref2url: Dict[str, str], ptr: int) -> str:
numbers = list({int(n) for n in re.findall(r"\[\[(\d+)\]\]", ref)})
numbers = {n: idx + 1 for idx, n in enumerate(numbers)}
updated_ref = re.sub(
r"\[\[(\d+)\]\]",
lambda match: f"[[{numbers[int(match.group(1))] + ptr}]]",
ref,
)
updated_ref2url = {}
if numbers:
try:
assert all(elem in ref2url for elem in numbers)
except Exception as exc:
logging.info(f"Illegal reference id: {str(exc)}")
if ref2url:
updated_ref2url = {
numbers[idx] + ptr: ref2url[idx] for idx in numbers if idx in ref2url
}
return updated_ref, updated_ref2url, len(numbers) + 1
def _generate_references_from_graph(graph: Dict[str, dict]) -> Tuple[str, Dict[int, dict]]:
ptr, references, references_url = 0, [], {}
for name, data_item in graph.items():
if name in ["root", "response"]:
continue
# only search once at each node, thus the result offset is 2
assert data_item["memory"]["agent.memory"][2]["sender"].endswith("ActionExecutor")
ref2url = {
int(k): v
for k, v in json.loads(data_item["memory"]["agent.memory"][2]["content"]).items()
}
updata_ref, ref2url, added_ptr = _update_ref(
data_item["response"]["content"], ref2url, ptr
)
ptr += added_ptr
references.append(f'## {data_item["content"]}\n\n{updata_ref}')
references_url.update(ref2url)
return "\n\n".join(references), references_url
class MindSearchAgent(StreamingAgentForInternLM):
def __init__(
self,
searcher_cfg: dict,
summary_prompt: str,
finish_condition=lambda m: "add_response_node" in m.content,
max_turn: int = 10,
**kwargs,
):
WebSearchGraph.SEARCHER_CONFIG = searcher_cfg
super().__init__(finish_condition=finish_condition, max_turn=max_turn, **kwargs)
self.summary_prompt = summary_prompt
self.action = ExecutionAction()
def forward(self, message: AgentMessage, session_id=0, **kwargs):
if isinstance(message, str):
message = AgentMessage(sender="user", content=message)
_graph_state = dict(node={}, adjacency_list={}, ref2url={})
local_dict, global_dict = {}, globals()
for _ in range(self.max_turn):
last_agent_state = AgentStatusCode.SESSION_READY
for message in self.agent(message, session_id=session_id, **kwargs):
if isinstance(message.formatted, dict) and message.formatted.get("tool_type"):
if message.stream_state == ModelStatusCode.END:
message.stream_state = last_agent_state + int(
last_agent_state
in [
AgentStatusCode.CODING,
AgentStatusCode.PLUGIN_START,
]
)
else:
message.stream_state = (
AgentStatusCode.PLUGIN_START
if message.formatted["tool_type"] == "plugin"
else AgentStatusCode.CODING
)
else:
message.stream_state = AgentStatusCode.STREAM_ING
message.formatted.update(deepcopy(_graph_state))
yield message
last_agent_state = message.stream_state
if not message.formatted["tool_type"]:
message.stream_state = AgentStatusCode.END
yield message
return
gen = GeneratorWithReturn(
self.action.run(message.content, local_dict, global_dict, True)
)
for graph_exec in gen:
graph_exec.formatted["ref2url"] = deepcopy(_graph_state["ref2url"])
yield graph_exec
reference, references_url = _generate_references_from_graph(gen.ret[1])
_graph_state.update(node=gen.ret[1], adjacency_list=gen.ret[2], ref2url=references_url)
if self.finish_condition(message):
message = AgentMessage(
sender="ActionExecutor",
content=self.summary_prompt,
formatted=deepcopy(_graph_state),
stream_state=message.stream_state + 1, # plugin or code return
)
yield message
# summarize the references to generate the final answer
for message in self.agent(message, session_id=session_id, **kwargs):
message.formatted.update(deepcopy(_graph_state))
yield message
return
message = AgentMessage(
sender="ActionExecutor",
content=reference,
formatted=deepcopy(_graph_state),
stream_state=message.stream_state + 1, # plugin or code return
)
yield message
class AsyncMindSearchAgent(AsyncStreamingAgentForInternLM):
def __init__(
self,
searcher_cfg: dict,
summary_prompt: str,
finish_condition=lambda m: "add_response_node" in m.content,
max_turn: int = 10,
**kwargs,
):
WebSearchGraph.SEARCHER_CONFIG = searcher_cfg
WebSearchGraph.is_async = True
WebSearchGraph.start_loop()
super().__init__(finish_condition=finish_condition, max_turn=max_turn, **kwargs)
self.summary_prompt = summary_prompt
self.action = ExecutionAction()
async def forward(self, message: AgentMessage, session_id=0, **kwargs):
if isinstance(message, str):
message = AgentMessage(sender="user", content=message)
_graph_state = dict(node={}, adjacency_list={}, ref2url={})
local_dict, global_dict = {}, globals()
for _ in range(self.max_turn):
last_agent_state = AgentStatusCode.SESSION_READY
async for message in self.agent(message, session_id=session_id, **kwargs):
if isinstance(message.formatted, dict) and message.formatted.get("tool_type"):
if message.stream_state == ModelStatusCode.END:
message.stream_state = last_agent_state + int(
last_agent_state
in [
AgentStatusCode.CODING,
AgentStatusCode.PLUGIN_START,
]
)
else:
message.stream_state = (
AgentStatusCode.PLUGIN_START
if message.formatted["tool_type"] == "plugin"
else AgentStatusCode.CODING
)
else:
message.stream_state = AgentStatusCode.STREAM_ING
message.formatted.update(deepcopy(_graph_state))
yield message
last_agent_state = message.stream_state
if not message.formatted["tool_type"]:
message.stream_state = AgentStatusCode.END
yield message
return
gen = GeneratorWithReturn(
self.action.run(message.content, local_dict, global_dict, True)
)
for graph_exec in gen:
graph_exec.formatted["ref2url"] = deepcopy(_graph_state["ref2url"])
yield graph_exec
reference, references_url = _generate_references_from_graph(gen.ret[1])
_graph_state.update(node=gen.ret[1], adjacency_list=gen.ret[2], ref2url=references_url)
if self.finish_condition(message):
message = AgentMessage(
sender="ActionExecutor",
content=self.summary_prompt,
formatted=deepcopy(_graph_state),
stream_state=message.stream_state + 1, # plugin or code return
)
yield message
# summarize the references to generate the final answer
async for message in self.agent(message, session_id=session_id, **kwargs):
message.formatted.update(deepcopy(_graph_state))
yield message
return
message = AgentMessage(
sender="ActionExecutor",
content=reference,
formatted=deepcopy(_graph_state),
stream_state=message.stream_state + 1, # plugin or code return
)
yield message
|