Spaces:
Sleeping
Sleeping
File size: 8,121 Bytes
dc9e27a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
# msdl/utils.py
import os
import re
import shutil
import sys
import yaml
from functools import lru_cache
from pathlib import Path
from msdl.config import (
BACKEND_DOCKERFILE_DIR,
CLOUD_LLM_DOCKERFILE,
FRONTEND_DOCKERFILE_DIR,
LOCAL_LLM_DOCKERFILE,
PACKAGE_DIR,
REACT_DOCKERFILE,
TEMP_DIR,
ENV_FILE_PATH,
)
from msdl.i18n import t
@lru_cache(maxsize=None)
def get_env_variable(var_name, default=None):
if ENV_FILE_PATH.exists():
with ENV_FILE_PATH.open("r") as env_file:
for line in env_file:
if line.startswith(f"{var_name}="):
return line.strip().split("=", 1)[1]
return os.getenv(var_name, default)
@lru_cache(maxsize=None)
def get_existing_api_key(env_var_name):
env_vars = read_env_file()
return env_vars.get(env_var_name)
@lru_cache(maxsize=None)
def read_env_file():
env_vars = {}
if ENV_FILE_PATH.exists():
with ENV_FILE_PATH.open("r") as env_file:
for line in env_file:
if "=" in line and not line.strip().startswith("#"):
key, value = line.strip().split("=", 1)
env_vars[key] = value.strip('"').strip("'")
return env_vars
def clean_api_key(api_key):
cleaned_key = api_key.strip()
cleaned_key = re.sub(r"\s+", "", cleaned_key)
return cleaned_key
@lru_cache(maxsize=None)
def validate_api_key(api_key, key_type, t):
basic_pattern = r"^sk-[A-Za-z0-9]+$"
web_search_pattern = r"^[A-Za-z0-9_\-\.]+$"
tencent_pattern = r"^[A-Za-z0-9]+$"
validation_rules = {
# Model API Keys
"SILICON_API_KEY": basic_pattern,
"OPENAI_API_KEY": basic_pattern,
"QWEN_API_KEY": basic_pattern,
# Search Engine API Keys
"BING_SEARCH_API_KEY": web_search_pattern,
"BRAVE_SEARCH_API_KEY": web_search_pattern,
"GOOGLE_SERPER_API_KEY": web_search_pattern,
"TENCENT_SEARCH_SECRET_ID": tencent_pattern,
"TENCENT_SEARCH_SECRET_KEY": tencent_pattern,
# Legacy support
"WEB_SEARCH_API_KEY": web_search_pattern,
}
if key_type not in validation_rules:
raise ValueError(t("UNKNOWN_API_KEY_TYPE", KEY_TYPE=key_type))
pattern = validation_rules[key_type]
return re.match(pattern, api_key) is not None
def save_api_key_to_env(key_type, api_key, t):
"""Save API key to .env file
Args:
key_type: Environment variable name or model format
api_key: API key value
t: Translation function
"""
# Convert model format to env var name if needed
env_var_name = {
"internlm_silicon": "SILICON_API_KEY",
"gpt4": "OPENAI_API_KEY",
"qwen": "QWEN_API_KEY",
}.get(key_type, key_type) # If not a model format, use key_type directly
if not validate_api_key(api_key, env_var_name, t):
raise ValueError(t("INVALID_API_KEY", KEY_TYPE=env_var_name))
env_vars = read_env_file()
env_vars[env_var_name] = api_key
with ENV_FILE_PATH.open("w") as env_file:
for key, value in env_vars.items():
env_file.write(f"{key}={value}\n")
print(t("API_KEY_SAVED", ENV_VAR_NAME=env_var_name))
def ensure_directory(path):
path = Path(path)
if not path.exists():
path.mkdir(parents=True, exist_ok=True)
print(t("DIR_CREATED", dir=path))
def copy_templates_to_temp(template_files):
template_dir = PACKAGE_DIR / "templates"
ensure_directory(TEMP_DIR)
for filename in template_files:
src = template_dir / filename
dst = TEMP_DIR / filename
if src.exists():
shutil.copy2(src, dst)
print(t("FILE_COPIED", file=filename))
else:
print(t("FILE_NOT_FOUND", file=filename))
sys.exit(1)
def modify_docker_compose(model_type, backend_language, model_format, search_engine):
"""Modify docker-compose.yaml based on user choices"""
docker_compose_path = os.path.join(TEMP_DIR, "docker-compose.yaml")
with open(docker_compose_path, "r") as file:
compose_data = yaml.safe_load(file)
# Set the name of the project
compose_data["name"] = "mindsearch"
# Configure backend service
backend_service = compose_data["services"]["backend"]
# Set environment variables
if "environment" not in backend_service:
backend_service["environment"] = []
# Add or update environment variables
env_vars = {
"LANG": backend_language,
"MODEL_FORMAT": model_format,
"SEARCH_ENGINE": search_engine
}
# Ensure .env file is included
if "env_file" not in backend_service:
backend_service["env_file"] = [".env"]
elif ".env" not in backend_service["env_file"]:
backend_service["env_file"].append(".env")
# Set command with all parameters
command = f"python -m mindsearch.app --lang {backend_language} --model_format {model_format} --search_engine {search_engine}"
backend_service["command"] = command
# Convert environment variables to docker-compose format
backend_service["environment"] = [
f"{key}={value}" for key, value in env_vars.items()
]
# Configure based on model type
if model_type == CLOUD_LLM_DOCKERFILE:
if "deploy" in backend_service:
del backend_service["deploy"]
# Remove volumes for cloud deployment
if "volumes" in backend_service:
del backend_service["volumes"]
elif model_type == LOCAL_LLM_DOCKERFILE:
# Add GPU configuration for local deployment
if "deploy" not in backend_service:
backend_service["deploy"] = {
"resources": {
"reservations": {
"devices": [
{"driver": "nvidia", "count": 1, "capabilities": ["gpu"]}
]
}
}
}
# Add volume for cache in local deployment
backend_service["volumes"] = ["/root/.cache:/root/.cache"]
else:
raise ValueError(t("UNKNOWN_DOCKERFILE", dockerfile=model_type))
# Save the modified docker-compose.yaml
with open(docker_compose_path, "w") as file:
yaml.dump(compose_data, file)
print(
t(
"docker_compose_updated",
mode=(t("CLOUD") if model_type == CLOUD_LLM_DOCKERFILE else t("LOCAL")),
format=model_format,
)
)
def get_model_formats(model_type):
if model_type == CLOUD_LLM_DOCKERFILE:
return ["internlm_silicon", "qwen", "gpt4"]
elif model_type == LOCAL_LLM_DOCKERFILE:
return ["internlm_server", "internlm_client", "internlm_hf"]
else:
raise ValueError(t("UNKNOWN_MODEL_TYPE", model_type=model_type))
def copy_backend_dockerfile(choice):
"""Copy backend Dockerfile to temp directory based on user choice"""
source_file = Path(BACKEND_DOCKERFILE_DIR) / choice
dest_file = "backend.dockerfile"
source_path = PACKAGE_DIR / "templates" / source_file
dest_path = TEMP_DIR / dest_file
if not source_path.exists():
raise FileNotFoundError(t("FILE_NOT_FOUND", file=source_file))
dest_path.parent.mkdir(parents=True, exist_ok=True)
dest_path.write_text(source_path.read_text())
print(
t(
"BACKEND_DOCKERFILE_COPIED",
source_path=str(source_path),
dest_path=str(dest_path),
))
def copy_frontend_dockerfile():
"""Copy frontend Dockerfile to temp directory"""
source_file = Path(FRONTEND_DOCKERFILE_DIR) / REACT_DOCKERFILE
dest_file = "frontend.dockerfile"
source_path = PACKAGE_DIR / "templates" / source_file
dest_path = TEMP_DIR / dest_file
if not source_path.exists():
raise FileNotFoundError(t("FILE_NOT_FOUND", file=source_file))
dest_path.parent.mkdir(parents=True, exist_ok=True)
dest_path.write_text(source_path.read_text())
print(
t(
"FRONTEND_DOCKERFILE_COPIED",
source_path=str(source_path),
dest_path=str(dest_path),
))
|