diff --git "a/forecasting/colab_model_train.ipynb" "b/forecasting/colab_model_train.ipynb"
new file mode 100644--- /dev/null
+++ "b/forecasting/colab_model_train.ipynb"
@@ -0,0 +1,11450 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "MMHkv6MqYL0z"
+ },
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "_fdfg5W6YL00",
+ "outputId": "89bc6702-c282-4f2f-88d8-f93b251ce00c"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "C:\\Users\\karlo\\AppData\\Local\\Temp\\ipykernel_11020\\3466840311.py:1: DtypeWarning: Columns (3,12,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,37,41,42,44) have mixed types. Specify dtype option on import or set low_memory=False.\n",
+ " data_normal = pd.read_csv('.\\data\\для анализа\\dataset._normal.csv', delimiter=';')\n"
+ ]
+ }
+ ],
+ "source": [
+ "data_normal = pd.read_csv('.\\data\\для анализа\\dataset._normal.csv', delimiter=';')\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "yf308r_QYL00"
+ },
+ "outputs": [],
+ "source": [
+ "data_normal[\"Рабочий\"] = 1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "eE6kVD4YYL01",
+ "outputId": "fd86ce39-d7a1-46f4-ddfd-645b99d665d7"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Дата и время | \n",
+ " Полож.пед.акселер.,% | \n",
+ " Нагрузка на двигатель, % | \n",
+ " Давл.масла двиг.,кПа | \n",
+ " Темп.масла двиг.,°С | \n",
+ " Обор.двиг.,об/мин | \n",
+ " Значение счетчика моточасов, час:мин | \n",
+ " Сост.пед.сцепл. | \n",
+ " iButton2 | \n",
+ " КПП. Температура масла | \n",
+ " ... | \n",
+ " Холодный старт (spn3871) | \n",
+ " Крутящий момент (spn513), Нм | \n",
+ " Положение рейки ТНВД (spn51), % | \n",
+ " Расход топлива (spn183), л/ч | \n",
+ " ДВС. Температура наддувочного воздуха, °С | \n",
+ " Давление наддувочного воздуха двигателя (spn106), кПа | \n",
+ " Текущая передача (spn523) | \n",
+ " Температура масла гидравлики (spn5536), С | \n",
+ " Педаль слива (spn598) | \n",
+ " Рабочий | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 01/06/2023 00:28:27 | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 01/06/2023 01:29:33 | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 01/06/2023 01:29:45 | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 01/06/2023 04:46:32 | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 01/06/2023 04:47:01 | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 892878 | \n",
+ " 31/05/2023 04:03:37 | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 892879 | \n",
+ " 31/05/2023 07:06:50 | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 892880 | \n",
+ " 31/05/2023 06:05:47 | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 892881 | \n",
+ " 31/05/2023 08:07:59 | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 892882 | \n",
+ " 31/05/2023 08:07:52 | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
892883 rows × 56 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Дата и время Полож.пед.акселер.,% Нагрузка на двигатель, % \\\n",
+ "0 01/06/2023 00:28:27 - - \n",
+ "1 01/06/2023 01:29:33 - - \n",
+ "2 01/06/2023 01:29:45 - - \n",
+ "3 01/06/2023 04:46:32 - - \n",
+ "4 01/06/2023 04:47:01 - - \n",
+ "... ... ... ... \n",
+ "892878 31/05/2023 04:03:37 - - \n",
+ "892879 31/05/2023 07:06:50 - - \n",
+ "892880 31/05/2023 06:05:47 - - \n",
+ "892881 31/05/2023 08:07:59 - - \n",
+ "892882 31/05/2023 08:07:52 - - \n",
+ "\n",
+ " Давл.масла двиг.,кПа Темп.масла двиг.,°С Обор.двиг.,об/мин \\\n",
+ "0 - - - \n",
+ "1 - - - \n",
+ "2 - - - \n",
+ "3 - - - \n",
+ "4 - - - \n",
+ "... ... ... ... \n",
+ "892878 - - - \n",
+ "892879 - - - \n",
+ "892880 - - - \n",
+ "892881 - - - \n",
+ "892882 - - - \n",
+ "\n",
+ " Значение счетчика моточасов, час:мин Сост.пед.сцепл. iButton2 \\\n",
+ "0 - - NaN \n",
+ "1 - - NaN \n",
+ "2 - - NaN \n",
+ "3 - - NaN \n",
+ "4 - - NaN \n",
+ "... ... ... ... \n",
+ "892878 - - NaN \n",
+ "892879 - - NaN \n",
+ "892880 - - NaN \n",
+ "892881 - - NaN \n",
+ "892882 - - NaN \n",
+ "\n",
+ " КПП. Температура масла ... Холодный старт (spn3871) \\\n",
+ "0 - ... - \n",
+ "1 - ... - \n",
+ "2 - ... - \n",
+ "3 - ... - \n",
+ "4 - ... - \n",
+ "... ... ... ... \n",
+ "892878 - ... - \n",
+ "892879 - ... - \n",
+ "892880 - ... - \n",
+ "892881 - ... - \n",
+ "892882 - ... - \n",
+ "\n",
+ " Крутящий момент (spn513), Нм Положение рейки ТНВД (spn51), % \\\n",
+ "0 - - \n",
+ "1 - - \n",
+ "2 - - \n",
+ "3 - - \n",
+ "4 - - \n",
+ "... ... ... \n",
+ "892878 - - \n",
+ "892879 - - \n",
+ "892880 - - \n",
+ "892881 - - \n",
+ "892882 - - \n",
+ "\n",
+ " Расход топлива (spn183), л/ч ДВС. Температура наддувочного воздуха, °С \\\n",
+ "0 - - \n",
+ "1 - - \n",
+ "2 - - \n",
+ "3 - - \n",
+ "4 - - \n",
+ "... ... ... \n",
+ "892878 - - \n",
+ "892879 - - \n",
+ "892880 - - \n",
+ "892881 - - \n",
+ "892882 - - \n",
+ "\n",
+ " Давление наддувочного воздуха двигателя (spn106), кПа \\\n",
+ "0 - \n",
+ "1 - \n",
+ "2 - \n",
+ "3 - \n",
+ "4 - \n",
+ "... ... \n",
+ "892878 - \n",
+ "892879 - \n",
+ "892880 - \n",
+ "892881 - \n",
+ "892882 - \n",
+ "\n",
+ " Текущая передача (spn523) Температура масла гидравлики (spn5536), С \\\n",
+ "0 - - \n",
+ "1 - - \n",
+ "2 - - \n",
+ "3 - - \n",
+ "4 - - \n",
+ "... ... ... \n",
+ "892878 - - \n",
+ "892879 - - \n",
+ "892880 - - \n",
+ "892881 - - \n",
+ "892882 - - \n",
+ "\n",
+ " Педаль слива (spn598) Рабочий \n",
+ "0 - 1 \n",
+ "1 - 1 \n",
+ "2 - 1 \n",
+ "3 - 1 \n",
+ "4 - 1 \n",
+ "... ... ... \n",
+ "892878 - 1 \n",
+ "892879 - 1 \n",
+ "892880 - 1 \n",
+ "892881 - 1 \n",
+ "892882 - 1 \n",
+ "\n",
+ "[892883 rows x 56 columns]"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data_normal"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "AaQx6Y0-YL01",
+ "outputId": "8ca282bf-049b-453a-9ee9-4f80de9f8d7d"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "C:\\Users\\karlo\\AppData\\Local\\Temp\\ipykernel_11020\\1794124453.py:1: DtypeWarning: Columns (3,11,12,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,37,41,42,44) have mixed types. Specify dtype option on import or set low_memory=False.\n",
+ " data_problem = pd.read_csv('data\\для анализа\\dataset._problems.csv', delimiter=';')\n"
+ ]
+ }
+ ],
+ "source": [
+ "data_problem = pd.read_csv('data\\для анализа\\dataset._problems.csv', delimiter=';')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "An-OsTK3YL01"
+ },
+ "outputs": [],
+ "source": [
+ "data_problem[\"Рабочий\"] = 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "d8PUMiRVYL01",
+ "outputId": "e0717c9d-7fc8-4bce-81b0-59de2d89bfc2"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Дата и время | \n",
+ " Полож.пед.акселер.,% | \n",
+ " Нагрузка на двигатель, % | \n",
+ " Давл.масла двиг.,кПа | \n",
+ " Темп.масла двиг.,°С | \n",
+ " Обор.двиг.,об/мин | \n",
+ " Значение счетчика моточасов, час:мин | \n",
+ " Сост.пед.сцепл. | \n",
+ " iButton2 | \n",
+ " КПП. Температура масла | \n",
+ " ... | \n",
+ " Холодный старт (spn3871) | \n",
+ " Крутящий момент (spn513), Нм | \n",
+ " Положение рейки ТНВД (spn51), % | \n",
+ " Расход топлива (spn183), л/ч | \n",
+ " ДВС. Температура наддувочного воздуха, °С | \n",
+ " Давление наддувочного воздуха двигателя (spn106), кПа | \n",
+ " Текущая передача (spn523) | \n",
+ " Температура масла гидравлики (spn5536), С | \n",
+ " Педаль слива (spn598) | \n",
+ " Рабочий | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 01/08/2023 11:45:47 | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 01/08/2023 11:46:01 | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 01/08/2023 12:23:43 | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 01/08/2023 12:23:57 | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 01/08/2023 12:36:35 | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 2263202 | \n",
+ " 24/08/2023 11:46:04 | \n",
+ " 0,0 | \n",
+ " - | \n",
+ " 528 | \n",
+ " -273,000 | \n",
+ " 1885,500 | \n",
+ " - | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 2263203 | \n",
+ " 24/08/2023 11:46:03 | \n",
+ " 0,0 | \n",
+ " - | \n",
+ " 528 | \n",
+ " -273,000 | \n",
+ " 1893,000 | \n",
+ " - | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 2263204 | \n",
+ " 24/08/2023 11:46:02 | \n",
+ " 0,0 | \n",
+ " - | \n",
+ " 528 | \n",
+ " -273,000 | \n",
+ " 1891,500 | \n",
+ " - | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 2263205 | \n",
+ " 24/08/2023 11:46:01 | \n",
+ " 0,0 | \n",
+ " - | \n",
+ " 528 | \n",
+ " -273,000 | \n",
+ " 1916,250 | \n",
+ " 1380:24 | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 2263206 | \n",
+ " 24/08/2023 11:46:00 | \n",
+ " 0,0 | \n",
+ " - | \n",
+ " 528 | \n",
+ " -273,000 | \n",
+ " 1900,750 | \n",
+ " - | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
2263207 rows × 56 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Дата и время Полож.пед.акселер.,% Нагрузка на двигатель, % \\\n",
+ "0 01/08/2023 11:45:47 - - \n",
+ "1 01/08/2023 11:46:01 - - \n",
+ "2 01/08/2023 12:23:43 - - \n",
+ "3 01/08/2023 12:23:57 - - \n",
+ "4 01/08/2023 12:36:35 - - \n",
+ "... ... ... ... \n",
+ "2263202 24/08/2023 11:46:04 0,0 - \n",
+ "2263203 24/08/2023 11:46:03 0,0 - \n",
+ "2263204 24/08/2023 11:46:02 0,0 - \n",
+ "2263205 24/08/2023 11:46:01 0,0 - \n",
+ "2263206 24/08/2023 11:46:00 0,0 - \n",
+ "\n",
+ " Давл.масла двиг.,кПа Темп.масла двиг.,°С Обор.двиг.,об/мин \\\n",
+ "0 - - - \n",
+ "1 - - - \n",
+ "2 - - - \n",
+ "3 - - - \n",
+ "4 - - - \n",
+ "... ... ... ... \n",
+ "2263202 528 -273,000 1885,500 \n",
+ "2263203 528 -273,000 1893,000 \n",
+ "2263204 528 -273,000 1891,500 \n",
+ "2263205 528 -273,000 1916,250 \n",
+ "2263206 528 -273,000 1900,750 \n",
+ "\n",
+ " Значение счетчика моточасов, час:мин Сост.пед.сцепл. iButton2 \\\n",
+ "0 - - NaN \n",
+ "1 - - NaN \n",
+ "2 - - NaN \n",
+ "3 - - NaN \n",
+ "4 - - NaN \n",
+ "... ... ... ... \n",
+ "2263202 - Отпущ. NaN \n",
+ "2263203 - Отпущ. NaN \n",
+ "2263204 - Отпущ. NaN \n",
+ "2263205 1380:24 Отпущ. NaN \n",
+ "2263206 - Отпущ. NaN \n",
+ "\n",
+ " КПП. Температура масла ... Холодный старт (spn3871) \\\n",
+ "0 - ... - \n",
+ "1 - ... - \n",
+ "2 - ... - \n",
+ "3 - ... - \n",
+ "4 - ... - \n",
+ "... ... ... ... \n",
+ "2263202 - ... - \n",
+ "2263203 - ... - \n",
+ "2263204 - ... - \n",
+ "2263205 - ... - \n",
+ "2263206 - ... - \n",
+ "\n",
+ " Крутящий момент (spn513), Нм Положение рейки ТНВД (spn51), % \\\n",
+ "0 - - \n",
+ "1 - - \n",
+ "2 - - \n",
+ "3 - - \n",
+ "4 - - \n",
+ "... ... ... \n",
+ "2263202 - - \n",
+ "2263203 - - \n",
+ "2263204 - - \n",
+ "2263205 - - \n",
+ "2263206 - - \n",
+ "\n",
+ " Расход топлива (spn183), л/ч \\\n",
+ "0 - \n",
+ "1 - \n",
+ "2 - \n",
+ "3 - \n",
+ "4 - \n",
+ "... ... \n",
+ "2263202 - \n",
+ "2263203 - \n",
+ "2263204 - \n",
+ "2263205 - \n",
+ "2263206 - \n",
+ "\n",
+ " ДВС. Температура наддувочного воздуха, °С \\\n",
+ "0 - \n",
+ "1 - \n",
+ "2 - \n",
+ "3 - \n",
+ "4 - \n",
+ "... ... \n",
+ "2263202 - \n",
+ "2263203 - \n",
+ "2263204 - \n",
+ "2263205 - \n",
+ "2263206 - \n",
+ "\n",
+ " Давление наддувочного воздуха двигателя (spn106), кПа \\\n",
+ "0 - \n",
+ "1 - \n",
+ "2 - \n",
+ "3 - \n",
+ "4 - \n",
+ "... ... \n",
+ "2263202 - \n",
+ "2263203 - \n",
+ "2263204 - \n",
+ "2263205 - \n",
+ "2263206 - \n",
+ "\n",
+ " Текущая передача (spn523) Температура масла гидравлики (spn5536), С \\\n",
+ "0 - - \n",
+ "1 - - \n",
+ "2 - - \n",
+ "3 - - \n",
+ "4 - - \n",
+ "... ... ... \n",
+ "2263202 - - \n",
+ "2263203 - - \n",
+ "2263204 - - \n",
+ "2263205 - - \n",
+ "2263206 - - \n",
+ "\n",
+ " Педаль слива (spn598) Рабочий \n",
+ "0 - 2 \n",
+ "1 - 2 \n",
+ "2 - 2 \n",
+ "3 - 2 \n",
+ "4 - 2 \n",
+ "... ... ... \n",
+ "2263202 - 2 \n",
+ "2263203 - 2 \n",
+ "2263204 - 2 \n",
+ "2263205 - 2 \n",
+ "2263206 - 2 \n",
+ "\n",
+ "[2263207 rows x 56 columns]"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data_problem"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "Oi_b9K0FYL01"
+ },
+ "outputs": [],
+ "source": [
+ "combinet = pd.concat([data_normal, data_problem])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "I9AzhQ83YL01",
+ "outputId": "62b84d5e-4232-456f-e1a3-ca9836e32404"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Дата и время | \n",
+ " Полож.пед.акселер.,% | \n",
+ " Нагрузка на двигатель, % | \n",
+ " Давл.масла двиг.,кПа | \n",
+ " Темп.масла двиг.,°С | \n",
+ " Обор.двиг.,об/мин | \n",
+ " Значение счетчика моточасов, час:мин | \n",
+ " Сост.пед.сцепл. | \n",
+ " iButton2 | \n",
+ " КПП. Температура масла | \n",
+ " ... | \n",
+ " Холодный старт (spn3871) | \n",
+ " Крутящий момент (spn513), Нм | \n",
+ " Положение рейки ТНВД (spn51), % | \n",
+ " Расход топлива (spn183), л/ч | \n",
+ " ДВС. Температура наддувочного воздуха, °С | \n",
+ " Давление наддувочного воздуха двигателя (spn106), кПа | \n",
+ " Текущая передача (spn523) | \n",
+ " Температура масла гидравлики (spn5536), С | \n",
+ " Педаль слива (spn598) | \n",
+ " Рабочий | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 01/06/2023 00:28:27 | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 01/06/2023 01:29:33 | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 01/06/2023 01:29:45 | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 01/06/2023 04:46:32 | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 01/06/2023 04:47:01 | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 2263202 | \n",
+ " 24/08/2023 11:46:04 | \n",
+ " 0,0 | \n",
+ " - | \n",
+ " 528 | \n",
+ " -273,000 | \n",
+ " 1885,500 | \n",
+ " - | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 2263203 | \n",
+ " 24/08/2023 11:46:03 | \n",
+ " 0,0 | \n",
+ " - | \n",
+ " 528 | \n",
+ " -273,000 | \n",
+ " 1893,000 | \n",
+ " - | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 2263204 | \n",
+ " 24/08/2023 11:46:02 | \n",
+ " 0,0 | \n",
+ " - | \n",
+ " 528 | \n",
+ " -273,000 | \n",
+ " 1891,500 | \n",
+ " - | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 2263205 | \n",
+ " 24/08/2023 11:46:01 | \n",
+ " 0,0 | \n",
+ " - | \n",
+ " 528 | \n",
+ " -273,000 | \n",
+ " 1916,250 | \n",
+ " 1380:24 | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 2263206 | \n",
+ " 24/08/2023 11:46:00 | \n",
+ " 0,0 | \n",
+ " - | \n",
+ " 528 | \n",
+ " -273,000 | \n",
+ " 1900,750 | \n",
+ " - | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " - | \n",
+ " ... | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " - | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
3156090 rows × 56 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Дата и время Полож.пед.акселер.,% Нагрузка на двигатель, % \\\n",
+ "0 01/06/2023 00:28:27 - - \n",
+ "1 01/06/2023 01:29:33 - - \n",
+ "2 01/06/2023 01:29:45 - - \n",
+ "3 01/06/2023 04:46:32 - - \n",
+ "4 01/06/2023 04:47:01 - - \n",
+ "... ... ... ... \n",
+ "2263202 24/08/2023 11:46:04 0,0 - \n",
+ "2263203 24/08/2023 11:46:03 0,0 - \n",
+ "2263204 24/08/2023 11:46:02 0,0 - \n",
+ "2263205 24/08/2023 11:46:01 0,0 - \n",
+ "2263206 24/08/2023 11:46:00 0,0 - \n",
+ "\n",
+ " Давл.масла двиг.,кПа Темп.масла двиг.,°С Обор.двиг.,об/мин \\\n",
+ "0 - - - \n",
+ "1 - - - \n",
+ "2 - - - \n",
+ "3 - - - \n",
+ "4 - - - \n",
+ "... ... ... ... \n",
+ "2263202 528 -273,000 1885,500 \n",
+ "2263203 528 -273,000 1893,000 \n",
+ "2263204 528 -273,000 1891,500 \n",
+ "2263205 528 -273,000 1916,250 \n",
+ "2263206 528 -273,000 1900,750 \n",
+ "\n",
+ " Значение счетчика моточасов, час:мин Сост.пед.сцепл. iButton2 \\\n",
+ "0 - - NaN \n",
+ "1 - - NaN \n",
+ "2 - - NaN \n",
+ "3 - - NaN \n",
+ "4 - - NaN \n",
+ "... ... ... ... \n",
+ "2263202 - Отпущ. NaN \n",
+ "2263203 - Отпущ. NaN \n",
+ "2263204 - Отпущ. NaN \n",
+ "2263205 1380:24 Отпущ. NaN \n",
+ "2263206 - Отпущ. NaN \n",
+ "\n",
+ " КПП. Температура масла ... Холодный старт (spn3871) \\\n",
+ "0 - ... - \n",
+ "1 - ... - \n",
+ "2 - ... - \n",
+ "3 - ... - \n",
+ "4 - ... - \n",
+ "... ... ... ... \n",
+ "2263202 - ... - \n",
+ "2263203 - ... - \n",
+ "2263204 - ... - \n",
+ "2263205 - ... - \n",
+ "2263206 - ... - \n",
+ "\n",
+ " Крутящий момент (spn513), Нм Положение рейки ТНВД (spn51), % \\\n",
+ "0 - - \n",
+ "1 - - \n",
+ "2 - - \n",
+ "3 - - \n",
+ "4 - - \n",
+ "... ... ... \n",
+ "2263202 - - \n",
+ "2263203 - - \n",
+ "2263204 - - \n",
+ "2263205 - - \n",
+ "2263206 - - \n",
+ "\n",
+ " Расход топлива (spn183), л/ч \\\n",
+ "0 - \n",
+ "1 - \n",
+ "2 - \n",
+ "3 - \n",
+ "4 - \n",
+ "... ... \n",
+ "2263202 - \n",
+ "2263203 - \n",
+ "2263204 - \n",
+ "2263205 - \n",
+ "2263206 - \n",
+ "\n",
+ " ДВС. Температура наддувочного воздуха, °С \\\n",
+ "0 - \n",
+ "1 - \n",
+ "2 - \n",
+ "3 - \n",
+ "4 - \n",
+ "... ... \n",
+ "2263202 - \n",
+ "2263203 - \n",
+ "2263204 - \n",
+ "2263205 - \n",
+ "2263206 - \n",
+ "\n",
+ " Давление наддувочного воздуха двигателя (spn106), кПа \\\n",
+ "0 - \n",
+ "1 - \n",
+ "2 - \n",
+ "3 - \n",
+ "4 - \n",
+ "... ... \n",
+ "2263202 - \n",
+ "2263203 - \n",
+ "2263204 - \n",
+ "2263205 - \n",
+ "2263206 - \n",
+ "\n",
+ " Текущая передача (spn523) Температура масла гидравлики (spn5536), С \\\n",
+ "0 - - \n",
+ "1 - - \n",
+ "2 - - \n",
+ "3 - - \n",
+ "4 - - \n",
+ "... ... ... \n",
+ "2263202 - - \n",
+ "2263203 - - \n",
+ "2263204 - - \n",
+ "2263205 - - \n",
+ "2263206 - - \n",
+ "\n",
+ " Педаль слива (spn598) Рабочий \n",
+ "0 - 1 \n",
+ "1 - 1 \n",
+ "2 - 1 \n",
+ "3 - 1 \n",
+ "4 - 1 \n",
+ "... ... ... \n",
+ "2263202 - 2 \n",
+ "2263203 - 2 \n",
+ "2263204 - 2 \n",
+ "2263205 - 2 \n",
+ "2263206 - 2 \n",
+ "\n",
+ "[3156090 rows x 56 columns]"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "combinet"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "aTmLbAOiYL02"
+ },
+ "outputs": [],
+ "source": [
+ "data_anomal = pd.read_csv('data\\для анализа\\dataset._anomaly.csv', delimiter=';')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "c85Gf3pQYL02"
+ },
+ "outputs": [],
+ "source": [
+ "data_anomal['Рабочий'] = 3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "C-UEjNqOYL02"
+ },
+ "outputs": [],
+ "source": [
+ "combinet = pd.concat([combinet, data_anomal])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "277vcotkYL02"
+ },
+ "outputs": [],
+ "source": [
+ "combinet = combinet"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "0StXVeb9YL02",
+ "outputId": "ec6e9e71-cccd-4758-c1e8-4bf685fcbc84"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "C:\\Users\\karlo\\AppData\\Local\\Temp\\ipykernel_11020\\413649503.py:1: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
+ " combinet = combinet.replace(r'^\\s*-', np.nan, regex=True)\n"
+ ]
+ }
+ ],
+ "source": [
+ "combinet = combinet.replace(r'^\\s*-', np.nan, regex=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "ucEYlnJ1YL03",
+ "outputId": "c1a078ff-c65a-49b7-eea4-88e2e4a7e394"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Дата и время | \n",
+ " Полож.пед.акселер.,% | \n",
+ " Нагрузка на двигатель, % | \n",
+ " Давл.масла двиг.,кПа | \n",
+ " Темп.масла двиг.,°С | \n",
+ " Обор.двиг.,об/мин | \n",
+ " Значение счетчика моточасов, час:мин | \n",
+ " Сост.пед.сцепл. | \n",
+ " iButton2 | \n",
+ " КПП. Температура масла | \n",
+ " ... | \n",
+ " Холодный старт (spn3871) | \n",
+ " Крутящий момент (spn513), Нм | \n",
+ " Положение рейки ТНВД (spn51), % | \n",
+ " Расход топлива (spn183), л/ч | \n",
+ " ДВС. Температура наддувочного воздуха, °С | \n",
+ " Давление наддувочного воздуха двигателя (spn106), кПа | \n",
+ " Текущая передача (spn523) | \n",
+ " Температура масла гидравлики (spn5536), С | \n",
+ " Педаль слива (spn598) | \n",
+ " Рабочий | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 01/06/2023 00:28:27 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 01/06/2023 01:29:33 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 01/06/2023 01:29:45 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 01/06/2023 04:46:32 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 01/06/2023 04:47:01 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 189699 | \n",
+ " 18/05/2023 23:56:40 | \n",
+ " 8,0 | \n",
+ " NaN | \n",
+ " 458 | \n",
+ " 6 | \n",
+ " 3350,000 | \n",
+ " 168:36 | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " -238.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " 189700 | \n",
+ " 18/05/2023 23:57:10 | \n",
+ " 82,0 | \n",
+ " NaN | \n",
+ " 941 | \n",
+ " 105 | \n",
+ " 2778,000 | \n",
+ " 168:36 | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " -171.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " 189701 | \n",
+ " 18/05/2023 23:57:36 | \n",
+ " 10,0 | \n",
+ " NaN | \n",
+ " 1187 | \n",
+ " 182 | \n",
+ " 2518,000 | \n",
+ " 168:36 | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " -197.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " 189702 | \n",
+ " 18/05/2023 23:58:06 | \n",
+ " 22,0 | \n",
+ " NaN | \n",
+ " 1199 | \n",
+ " 65 | \n",
+ " 1291,000 | \n",
+ " 168:36 | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " -61.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " 189703 | \n",
+ " 18/05/2023 23:58:36 | \n",
+ " 55,0 | \n",
+ " NaN | \n",
+ " 751 | \n",
+ " 181 | \n",
+ " 4770,000 | \n",
+ " 168:36 | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " -12.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
3345794 rows × 56 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Дата и время Полож.пед.акселер.,% Нагрузка на двигатель, % \\\n",
+ "0 01/06/2023 00:28:27 NaN NaN \n",
+ "1 01/06/2023 01:29:33 NaN NaN \n",
+ "2 01/06/2023 01:29:45 NaN NaN \n",
+ "3 01/06/2023 04:46:32 NaN NaN \n",
+ "4 01/06/2023 04:47:01 NaN NaN \n",
+ "... ... ... ... \n",
+ "189699 18/05/2023 23:56:40 8,0 NaN \n",
+ "189700 18/05/2023 23:57:10 82,0 NaN \n",
+ "189701 18/05/2023 23:57:36 10,0 NaN \n",
+ "189702 18/05/2023 23:58:06 22,0 NaN \n",
+ "189703 18/05/2023 23:58:36 55,0 NaN \n",
+ "\n",
+ " Давл.масла двиг.,кПа Темп.масла двиг.,°С Обор.двиг.,об/мин \\\n",
+ "0 NaN NaN NaN \n",
+ "1 NaN NaN NaN \n",
+ "2 NaN NaN NaN \n",
+ "3 NaN NaN NaN \n",
+ "4 NaN NaN NaN \n",
+ "... ... ... ... \n",
+ "189699 458 6 3350,000 \n",
+ "189700 941 105 2778,000 \n",
+ "189701 1187 182 2518,000 \n",
+ "189702 1199 65 1291,000 \n",
+ "189703 751 181 4770,000 \n",
+ "\n",
+ " Значение счетчика моточасов, час:мин Сост.пед.сцепл. iButton2 \\\n",
+ "0 NaN NaN NaN \n",
+ "1 NaN NaN NaN \n",
+ "2 NaN NaN NaN \n",
+ "3 NaN NaN NaN \n",
+ "4 NaN NaN NaN \n",
+ "... ... ... ... \n",
+ "189699 168:36 Отпущ. NaN \n",
+ "189700 168:36 Отпущ. NaN \n",
+ "189701 168:36 Отпущ. NaN \n",
+ "189702 168:36 Отпущ. NaN \n",
+ "189703 168:36 Отпущ. NaN \n",
+ "\n",
+ " КПП. Температура масла ... Холодный старт (spn3871) \\\n",
+ "0 NaN ... NaN \n",
+ "1 NaN ... NaN \n",
+ "2 NaN ... NaN \n",
+ "3 NaN ... NaN \n",
+ "4 NaN ... NaN \n",
+ "... ... ... ... \n",
+ "189699 -238.0 ... 0 \n",
+ "189700 -171.0 ... 0 \n",
+ "189701 -197.0 ... 0 \n",
+ "189702 -61.0 ... 0 \n",
+ "189703 -12.0 ... 0 \n",
+ "\n",
+ " Крутящий момент (spn513), Нм Положение рейки ТНВД (spn51), % \\\n",
+ "0 NaN NaN \n",
+ "1 NaN NaN \n",
+ "2 NaN NaN \n",
+ "3 NaN NaN \n",
+ "4 NaN NaN \n",
+ "... ... ... \n",
+ "189699 NaN NaN \n",
+ "189700 NaN NaN \n",
+ "189701 NaN NaN \n",
+ "189702 NaN NaN \n",
+ "189703 NaN NaN \n",
+ "\n",
+ " Расход топлива (spn183), л/ч ДВС. Температура наддувочного воздуха, °С \\\n",
+ "0 NaN NaN \n",
+ "1 NaN NaN \n",
+ "2 NaN NaN \n",
+ "3 NaN NaN \n",
+ "4 NaN NaN \n",
+ "... ... ... \n",
+ "189699 NaN NaN \n",
+ "189700 NaN NaN \n",
+ "189701 NaN NaN \n",
+ "189702 NaN NaN \n",
+ "189703 NaN NaN \n",
+ "\n",
+ " Давление наддувочного воздуха двигателя (spn106), кПа \\\n",
+ "0 NaN \n",
+ "1 NaN \n",
+ "2 NaN \n",
+ "3 NaN \n",
+ "4 NaN \n",
+ "... ... \n",
+ "189699 NaN \n",
+ "189700 NaN \n",
+ "189701 NaN \n",
+ "189702 NaN \n",
+ "189703 NaN \n",
+ "\n",
+ " Текущая передача (spn523) Температура масла гидравлики (spn5536), С \\\n",
+ "0 NaN NaN \n",
+ "1 NaN NaN \n",
+ "2 NaN NaN \n",
+ "3 NaN NaN \n",
+ "4 NaN NaN \n",
+ "... ... ... \n",
+ "189699 NaN NaN \n",
+ "189700 NaN NaN \n",
+ "189701 NaN NaN \n",
+ "189702 NaN NaN \n",
+ "189703 NaN NaN \n",
+ "\n",
+ " Педаль слива (spn598) Рабочий \n",
+ "0 NaN 1 \n",
+ "1 NaN 1 \n",
+ "2 NaN 1 \n",
+ "3 NaN 1 \n",
+ "4 NaN 1 \n",
+ "... ... ... \n",
+ "189699 NaN 3 \n",
+ "189700 NaN 3 \n",
+ "189701 NaN 3 \n",
+ "189702 NaN 3 \n",
+ "189703 NaN 3 \n",
+ "\n",
+ "[3345794 rows x 56 columns]"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "combinet"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "bNh3_0MYYL03"
+ },
+ "outputs": [],
+ "source": [
+ "combinet = combinet[combinet.iloc[:, 1:-1].notna().any(axis=1)]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "AjEiYPwhYL03",
+ "outputId": "334350cf-26f3-42bf-ddd7-620407d4fe23"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Дата и время | \n",
+ " Полож.пед.акселер.,% | \n",
+ " Нагрузка на двигатель, % | \n",
+ " Давл.масла двиг.,кПа | \n",
+ " Темп.масла двиг.,°С | \n",
+ " Обор.двиг.,об/мин | \n",
+ " Значение счетчика моточасов, час:мин | \n",
+ " Сост.пед.сцепл. | \n",
+ " iButton2 | \n",
+ " КПП. Температура масла | \n",
+ " ... | \n",
+ " Холодный старт (spn3871) | \n",
+ " Крутящий момент (spn513), Нм | \n",
+ " Положение рейки ТНВД (spn51), % | \n",
+ " Расход топлива (spn183), л/ч | \n",
+ " ДВС. Температура наддувочного воздуха, °С | \n",
+ " Давление наддувочного воздуха двигателя (spn106), кПа | \n",
+ " Текущая передача (spn523) | \n",
+ " Температура масла гидравлики (spn5536), С | \n",
+ " Педаль слива (spn598) | \n",
+ " Рабочий | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 384 | \n",
+ " 01/06/2023 07:57:01 | \n",
+ " 0,0 | \n",
+ " NaN | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " 0,000 | \n",
+ " NaN | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 386 | \n",
+ " 01/06/2023 07:57:31 | \n",
+ " 0,0 | \n",
+ " NaN | \n",
+ " 380 | \n",
+ " NaN | \n",
+ " 649,000 | \n",
+ " 422:24 | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 387 | \n",
+ " 01/06/2023 07:58:01 | \n",
+ " 0,0 | \n",
+ " NaN | \n",
+ " 360 | \n",
+ " NaN | \n",
+ " 651,000 | \n",
+ " 422:24 | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 388 | \n",
+ " 01/06/2023 07:58:31 | \n",
+ " 0,0 | \n",
+ " NaN | \n",
+ " 348 | \n",
+ " NaN | \n",
+ " 656,000 | \n",
+ " 422:24 | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 389 | \n",
+ " 01/06/2023 07:59:01 | \n",
+ " 0,0 | \n",
+ " NaN | \n",
+ " 360 | \n",
+ " NaN | \n",
+ " 671,875 | \n",
+ " 422:24 | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 189699 | \n",
+ " 18/05/2023 23:56:40 | \n",
+ " 8,0 | \n",
+ " NaN | \n",
+ " 458 | \n",
+ " 6 | \n",
+ " 3350,000 | \n",
+ " 168:36 | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " -238.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " 189700 | \n",
+ " 18/05/2023 23:57:10 | \n",
+ " 82,0 | \n",
+ " NaN | \n",
+ " 941 | \n",
+ " 105 | \n",
+ " 2778,000 | \n",
+ " 168:36 | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " -171.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " 189701 | \n",
+ " 18/05/2023 23:57:36 | \n",
+ " 10,0 | \n",
+ " NaN | \n",
+ " 1187 | \n",
+ " 182 | \n",
+ " 2518,000 | \n",
+ " 168:36 | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " -197.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " 189702 | \n",
+ " 18/05/2023 23:58:06 | \n",
+ " 22,0 | \n",
+ " NaN | \n",
+ " 1199 | \n",
+ " 65 | \n",
+ " 1291,000 | \n",
+ " 168:36 | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " -61.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " 189703 | \n",
+ " 18/05/2023 23:58:36 | \n",
+ " 55,0 | \n",
+ " NaN | \n",
+ " 751 | \n",
+ " 181 | \n",
+ " 4770,000 | \n",
+ " 168:36 | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " -12.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
2856643 rows × 56 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Дата и время Полож.пед.акселер.,% Нагрузка на двигатель, % \\\n",
+ "384 01/06/2023 07:57:01 0,0 NaN \n",
+ "386 01/06/2023 07:57:31 0,0 NaN \n",
+ "387 01/06/2023 07:58:01 0,0 NaN \n",
+ "388 01/06/2023 07:58:31 0,0 NaN \n",
+ "389 01/06/2023 07:59:01 0,0 NaN \n",
+ "... ... ... ... \n",
+ "189699 18/05/2023 23:56:40 8,0 NaN \n",
+ "189700 18/05/2023 23:57:10 82,0 NaN \n",
+ "189701 18/05/2023 23:57:36 10,0 NaN \n",
+ "189702 18/05/2023 23:58:06 22,0 NaN \n",
+ "189703 18/05/2023 23:58:36 55,0 NaN \n",
+ "\n",
+ " Давл.масла двиг.,кПа Темп.масла двиг.,°С Обор.двиг.,об/мин \\\n",
+ "384 0 NaN 0,000 \n",
+ "386 380 NaN 649,000 \n",
+ "387 360 NaN 651,000 \n",
+ "388 348 NaN 656,000 \n",
+ "389 360 NaN 671,875 \n",
+ "... ... ... ... \n",
+ "189699 458 6 3350,000 \n",
+ "189700 941 105 2778,000 \n",
+ "189701 1187 182 2518,000 \n",
+ "189702 1199 65 1291,000 \n",
+ "189703 751 181 4770,000 \n",
+ "\n",
+ " Значение счетчика моточасов, час:мин Сост.пед.сцепл. iButton2 \\\n",
+ "384 NaN Отпущ. NaN \n",
+ "386 422:24 Отпущ. NaN \n",
+ "387 422:24 Отпущ. NaN \n",
+ "388 422:24 Отпущ. NaN \n",
+ "389 422:24 Отпущ. NaN \n",
+ "... ... ... ... \n",
+ "189699 168:36 Отпущ. NaN \n",
+ "189700 168:36 Отпущ. NaN \n",
+ "189701 168:36 Отпущ. NaN \n",
+ "189702 168:36 Отпущ. NaN \n",
+ "189703 168:36 Отпущ. NaN \n",
+ "\n",
+ " КПП. Температура масла ... Холодный старт (spn3871) \\\n",
+ "384 NaN ... NaN \n",
+ "386 NaN ... NaN \n",
+ "387 NaN ... NaN \n",
+ "388 NaN ... NaN \n",
+ "389 NaN ... NaN \n",
+ "... ... ... ... \n",
+ "189699 -238.0 ... 0 \n",
+ "189700 -171.0 ... 0 \n",
+ "189701 -197.0 ... 0 \n",
+ "189702 -61.0 ... 0 \n",
+ "189703 -12.0 ... 0 \n",
+ "\n",
+ " Крутящий момент (spn513), Нм Положение рейки ТНВД (spn51), % \\\n",
+ "384 NaN NaN \n",
+ "386 NaN NaN \n",
+ "387 NaN NaN \n",
+ "388 NaN NaN \n",
+ "389 NaN NaN \n",
+ "... ... ... \n",
+ "189699 NaN NaN \n",
+ "189700 NaN NaN \n",
+ "189701 NaN NaN \n",
+ "189702 NaN NaN \n",
+ "189703 NaN NaN \n",
+ "\n",
+ " Расход топлива (spn183), л/ч ДВС. Температура наддувочного воздуха, °С \\\n",
+ "384 NaN NaN \n",
+ "386 NaN NaN \n",
+ "387 NaN NaN \n",
+ "388 NaN NaN \n",
+ "389 NaN NaN \n",
+ "... ... ... \n",
+ "189699 NaN NaN \n",
+ "189700 NaN NaN \n",
+ "189701 NaN NaN \n",
+ "189702 NaN NaN \n",
+ "189703 NaN NaN \n",
+ "\n",
+ " Давление наддувочного воздуха двигателя (spn106), кПа \\\n",
+ "384 NaN \n",
+ "386 NaN \n",
+ "387 NaN \n",
+ "388 NaN \n",
+ "389 NaN \n",
+ "... ... \n",
+ "189699 NaN \n",
+ "189700 NaN \n",
+ "189701 NaN \n",
+ "189702 NaN \n",
+ "189703 NaN \n",
+ "\n",
+ " Текущая передача (spn523) Температура масла гидравлики (spn5536), С \\\n",
+ "384 NaN NaN \n",
+ "386 NaN NaN \n",
+ "387 NaN NaN \n",
+ "388 NaN NaN \n",
+ "389 NaN NaN \n",
+ "... ... ... \n",
+ "189699 NaN NaN \n",
+ "189700 NaN NaN \n",
+ "189701 NaN NaN \n",
+ "189702 NaN NaN \n",
+ "189703 NaN NaN \n",
+ "\n",
+ " Педаль слива (spn598) Рабочий \n",
+ "384 NaN 1 \n",
+ "386 NaN 1 \n",
+ "387 NaN 1 \n",
+ "388 NaN 1 \n",
+ "389 NaN 1 \n",
+ "... ... ... \n",
+ "189699 NaN 3 \n",
+ "189700 NaN 3 \n",
+ "189701 NaN 3 \n",
+ "189702 NaN 3 \n",
+ "189703 NaN 3 \n",
+ "\n",
+ "[2856643 rows x 56 columns]"
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "combinet"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "aAPZWdyFYL03"
+ },
+ "outputs": [],
+ "source": [
+ "#drop index\n",
+ "combinet.reset_index(drop=True, inplace=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "uUdBecjBYL03",
+ "outputId": "ed481571-0fac-40ba-a538-3b842d73e0e6"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "C:\\Users\\karlo\\AppData\\Local\\Temp\\ipykernel_11020\\3210479092.py:1: SettingWithCopyWarning: \n",
+ "A value is trying to be set on a copy of a slice from a DataFrame\n",
+ "\n",
+ "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+ " combinet.drop_duplicates(inplace=True)\n"
+ ]
+ }
+ ],
+ "source": [
+ "combinet.drop_duplicates(inplace=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "kXnjtjFwYL03",
+ "outputId": "e358cc79-6223-4f87-d02b-0843719ca74b"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Дата и время | \n",
+ " Полож.пед.акселер.,% | \n",
+ " Нагрузка на двигатель, % | \n",
+ " Давл.масла двиг.,кПа | \n",
+ " Темп.масла двиг.,°С | \n",
+ " Обор.двиг.,об/мин | \n",
+ " Значение счетчика моточасов, час:мин | \n",
+ " Сост.пед.сцепл. | \n",
+ " iButton2 | \n",
+ " КПП. Температура масла | \n",
+ " ... | \n",
+ " Холодный старт (spn3871) | \n",
+ " Крутящий момент (spn513), Нм | \n",
+ " Положение рейки ТНВД (spn51), % | \n",
+ " Расход топлива (spn183), л/ч | \n",
+ " ДВС. Температура наддувочного воздуха, °С | \n",
+ " Давление наддувочного воздуха двигателя (spn106), кПа | \n",
+ " Текущая передача (spn523) | \n",
+ " Температура масла гидравлики (spn5536), С | \n",
+ " Педаль слива (spn598) | \n",
+ " Рабочий | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 01/06/2023 07:57:01 | \n",
+ " 0,0 | \n",
+ " NaN | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " 0,000 | \n",
+ " NaN | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 01/06/2023 07:57:31 | \n",
+ " 0,0 | \n",
+ " NaN | \n",
+ " 380 | \n",
+ " NaN | \n",
+ " 649,000 | \n",
+ " 422:24 | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 01/06/2023 07:58:01 | \n",
+ " 0,0 | \n",
+ " NaN | \n",
+ " 360 | \n",
+ " NaN | \n",
+ " 651,000 | \n",
+ " 422:24 | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 01/06/2023 07:58:31 | \n",
+ " 0,0 | \n",
+ " NaN | \n",
+ " 348 | \n",
+ " NaN | \n",
+ " 656,000 | \n",
+ " 422:24 | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 01/06/2023 07:59:01 | \n",
+ " 0,0 | \n",
+ " NaN | \n",
+ " 360 | \n",
+ " NaN | \n",
+ " 671,875 | \n",
+ " 422:24 | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 2856638 | \n",
+ " 18/05/2023 23:56:40 | \n",
+ " 8,0 | \n",
+ " NaN | \n",
+ " 458 | \n",
+ " 6 | \n",
+ " 3350,000 | \n",
+ " 168:36 | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " -238.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " 2856639 | \n",
+ " 18/05/2023 23:57:10 | \n",
+ " 82,0 | \n",
+ " NaN | \n",
+ " 941 | \n",
+ " 105 | \n",
+ " 2778,000 | \n",
+ " 168:36 | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " -171.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " 2856640 | \n",
+ " 18/05/2023 23:57:36 | \n",
+ " 10,0 | \n",
+ " NaN | \n",
+ " 1187 | \n",
+ " 182 | \n",
+ " 2518,000 | \n",
+ " 168:36 | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " -197.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " 2856641 | \n",
+ " 18/05/2023 23:58:06 | \n",
+ " 22,0 | \n",
+ " NaN | \n",
+ " 1199 | \n",
+ " 65 | \n",
+ " 1291,000 | \n",
+ " 168:36 | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " -61.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " 2856642 | \n",
+ " 18/05/2023 23:58:36 | \n",
+ " 55,0 | \n",
+ " NaN | \n",
+ " 751 | \n",
+ " 181 | \n",
+ " 4770,000 | \n",
+ " 168:36 | \n",
+ " Отпущ. | \n",
+ " NaN | \n",
+ " -12.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
2834231 rows × 56 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Дата и время Полож.пед.акселер.,% Нагрузка на двигатель, % \\\n",
+ "0 01/06/2023 07:57:01 0,0 NaN \n",
+ "1 01/06/2023 07:57:31 0,0 NaN \n",
+ "2 01/06/2023 07:58:01 0,0 NaN \n",
+ "3 01/06/2023 07:58:31 0,0 NaN \n",
+ "4 01/06/2023 07:59:01 0,0 NaN \n",
+ "... ... ... ... \n",
+ "2856638 18/05/2023 23:56:40 8,0 NaN \n",
+ "2856639 18/05/2023 23:57:10 82,0 NaN \n",
+ "2856640 18/05/2023 23:57:36 10,0 NaN \n",
+ "2856641 18/05/2023 23:58:06 22,0 NaN \n",
+ "2856642 18/05/2023 23:58:36 55,0 NaN \n",
+ "\n",
+ " Давл.масла двиг.,кПа Темп.масла двиг.,°С Обор.двиг.,об/мин \\\n",
+ "0 0 NaN 0,000 \n",
+ "1 380 NaN 649,000 \n",
+ "2 360 NaN 651,000 \n",
+ "3 348 NaN 656,000 \n",
+ "4 360 NaN 671,875 \n",
+ "... ... ... ... \n",
+ "2856638 458 6 3350,000 \n",
+ "2856639 941 105 2778,000 \n",
+ "2856640 1187 182 2518,000 \n",
+ "2856641 1199 65 1291,000 \n",
+ "2856642 751 181 4770,000 \n",
+ "\n",
+ " Значение счетчика моточасов, час:мин Сост.пед.сцепл. iButton2 \\\n",
+ "0 NaN Отпущ. NaN \n",
+ "1 422:24 Отпущ. NaN \n",
+ "2 422:24 Отпущ. NaN \n",
+ "3 422:24 Отпущ. NaN \n",
+ "4 422:24 Отпущ. NaN \n",
+ "... ... ... ... \n",
+ "2856638 168:36 Отпущ. NaN \n",
+ "2856639 168:36 Отпущ. NaN \n",
+ "2856640 168:36 Отпущ. NaN \n",
+ "2856641 168:36 Отпущ. NaN \n",
+ "2856642 168:36 Отпущ. NaN \n",
+ "\n",
+ " КПП. Температура масла ... Холодный старт (spn3871) \\\n",
+ "0 NaN ... NaN \n",
+ "1 NaN ... NaN \n",
+ "2 NaN ... NaN \n",
+ "3 NaN ... NaN \n",
+ "4 NaN ... NaN \n",
+ "... ... ... ... \n",
+ "2856638 -238.0 ... 0 \n",
+ "2856639 -171.0 ... 0 \n",
+ "2856640 -197.0 ... 0 \n",
+ "2856641 -61.0 ... 0 \n",
+ "2856642 -12.0 ... 0 \n",
+ "\n",
+ " Крутящий момент (spn513), Нм Положение рейки ТНВД (spn51), % \\\n",
+ "0 NaN NaN \n",
+ "1 NaN NaN \n",
+ "2 NaN NaN \n",
+ "3 NaN NaN \n",
+ "4 NaN NaN \n",
+ "... ... ... \n",
+ "2856638 NaN NaN \n",
+ "2856639 NaN NaN \n",
+ "2856640 NaN NaN \n",
+ "2856641 NaN NaN \n",
+ "2856642 NaN NaN \n",
+ "\n",
+ " Расход топлива (spn183), л/ч \\\n",
+ "0 NaN \n",
+ "1 NaN \n",
+ "2 NaN \n",
+ "3 NaN \n",
+ "4 NaN \n",
+ "... ... \n",
+ "2856638 NaN \n",
+ "2856639 NaN \n",
+ "2856640 NaN \n",
+ "2856641 NaN \n",
+ "2856642 NaN \n",
+ "\n",
+ " ДВС. Температура наддувочного воздуха, °С \\\n",
+ "0 NaN \n",
+ "1 NaN \n",
+ "2 NaN \n",
+ "3 NaN \n",
+ "4 NaN \n",
+ "... ... \n",
+ "2856638 NaN \n",
+ "2856639 NaN \n",
+ "2856640 NaN \n",
+ "2856641 NaN \n",
+ "2856642 NaN \n",
+ "\n",
+ " Давление наддувочного воздуха двигателя (spn106), кПа \\\n",
+ "0 NaN \n",
+ "1 NaN \n",
+ "2 NaN \n",
+ "3 NaN \n",
+ "4 NaN \n",
+ "... ... \n",
+ "2856638 NaN \n",
+ "2856639 NaN \n",
+ "2856640 NaN \n",
+ "2856641 NaN \n",
+ "2856642 NaN \n",
+ "\n",
+ " Текущая передача (spn523) Температура масла гидравлики (spn5536), С \\\n",
+ "0 NaN NaN \n",
+ "1 NaN NaN \n",
+ "2 NaN NaN \n",
+ "3 NaN NaN \n",
+ "4 NaN NaN \n",
+ "... ... ... \n",
+ "2856638 NaN NaN \n",
+ "2856639 NaN NaN \n",
+ "2856640 NaN NaN \n",
+ "2856641 NaN NaN \n",
+ "2856642 NaN NaN \n",
+ "\n",
+ " Педаль слива (spn598) Рабочий \n",
+ "0 NaN 1 \n",
+ "1 NaN 1 \n",
+ "2 NaN 1 \n",
+ "3 NaN 1 \n",
+ "4 NaN 1 \n",
+ "... ... ... \n",
+ "2856638 NaN 3 \n",
+ "2856639 NaN 3 \n",
+ "2856640 NaN 3 \n",
+ "2856641 NaN 3 \n",
+ "2856642 NaN 3 \n",
+ "\n",
+ "[2834231 rows x 56 columns]"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "combinet"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "ZOegh2rYYL03"
+ },
+ "outputs": [],
+ "source": [
+ "combinet = combinet.drop(columns=['Дата и время', 'iButton2','Нагрузка на двигатель, %', 'Крутящий момент (spn513), Нм', 'Положение рейки ТНВД (spn51), %' , 'Расход топлива (spn183), л/ч', 'ДВС. Температура наддувочного воздуха, °С', 'Давление наддувочного возд��ха двигателя (spn106), кПа', 'Текущая передача (spn523)', 'Температура масла гидравлики (spn5536), С', 'Педаль слива (spn598)'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "Lr3K-P1OYL03"
+ },
+ "outputs": [],
+ "source": [
+ "combinet[\"Сост.пед.сцепл.\"] = combinet[\"Сост.пед.сцепл.\"].astype(bool)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "UZLpym0sYL03"
+ },
+ "outputs": [],
+ "source": [
+ "combinet['Обор.двиг.,об/мин'] = combinet['Обор.двиг.,об/мин'].str.replace(',', '.').astype(float)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "GWauhUWAYL04"
+ },
+ "outputs": [],
+ "source": [
+ "combinet['Значение счетчика моточасов, час:мин'] = combinet['Значение счетчика моточасов, час:мин'].str.replace(':', '').astype(float)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "id": "T7GWt_P7YL04"
+ },
+ "outputs": [],
+ "source": [
+ "combinet['Сост.пед.сцепл.'] = combinet['Сост.пед.сцепл.'].replace(',', '.').astype(float)\n",
+ "combinet['Сост.пед.сцепл.'] = combinet['Сост.пед.сцепл.'].astype(str)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "CkRWTcQIYL04"
+ },
+ "outputs": [],
+ "source": [
+ "combinet['Полож.пед.акселер.,%'] = combinet['Полож.пед.акселер.,%'].str.replace(',', '.').astype(float)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "81zw6h8sYL04"
+ },
+ "outputs": [],
+ "source": [
+ "combinet['Темп.масла двиг.,°С'] = combinet['Темп.масла двиг.,°С'].str.replace(',', '.').astype(float)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "UWKl2pnAYL04"
+ },
+ "outputs": [],
+ "source": [
+ "combinet['КПП. Температура масла'] = combinet['КПП. Температура масла'].astype(float)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "DAPlGXPZYL04"
+ },
+ "outputs": [],
+ "source": [
+ "combinet.drop(['Нейтраль КПП (spn3843)', 'Стояночный тормоз (spn3842)', 'Аварийная температура охлаждающей жидкости (spn3841)', 'Засоренность воздушного фильтра (spn3840)', 'Засоренность фильтра КПП (spn3847)', 'Аварийное давление масла ДВС (spn3846)',\n",
+ " 'Засоренность фильтра ДВС (spn3845)',\n",
+ " 'Засоренность фильтра рулевого управления (spn3844)',\n",
+ " 'Засоренность фильтра навесного оборудования (spn3851)',\n",
+ " 'Недопустимый уровень масла в гидробаке (spn3850)',\n",
+ " 'Аварийная температура масла в гидросистеме (spn3849)',\n",
+ " 'Аварийное давление в I контуре тормозной системы (spn3848)',\n",
+ " 'Аварийное давление в II контуре тормозной системы (spn3855)',\n",
+ " 'Зарядка АКБ (spn3854)', 'Отопитель (spn3853)',\n",
+ " 'Выход блока управления двигателем (spn3852)',\n",
+ " 'Включение тормозков (spn3859)', 'Засоренность фильтра слива (spn3858)',\n",
+ " 'Аварийное давление масла КПП (spn3857)',\n",
+ " 'Аварийная температура масла ДВС(spn3856)',\n",
+ " 'Неисправность тормозной системы (spn3863)', 'Термостарт (spn3862)',\n",
+ " 'Разрешение запуска двигателя (spn3861)', 'Низкий уровень ОЖ (spn3860)',\n",
+ " 'Аварийная температура масла ГТР (spn3867)',\n",
+ " 'Необходимость сервисного обслуживания (spn3866)',\n",
+ " 'Подогрев топливного фильтра (spn3865)', 'Вода в топливе (spn3864)',\n",
+ " 'Холодный старт (spn3871)'], axis=1, inplace=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "id": "Nw3GKn5SYL04"
+ },
+ "outputs": [],
+ "source": [
+ "cat_cols =['Сост.пед.сцепл.']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "!pip install ipympl"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "J81WqvgMajWz",
+ "outputId": "5859b6e7-eec7-496e-ef71-06282df7eb53"
+ },
+ "execution_count": 27,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Collecting ipympl\n",
+ " Downloading ipympl-0.9.3-py2.py3-none-any.whl (511 kB)\n",
+ "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/511.6 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m225.3/511.6 kB\u001b[0m \u001b[31m6.8 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m511.6/511.6 kB\u001b[0m \u001b[31m7.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hRequirement already satisfied: ipython<9 in /usr/local/lib/python3.10/dist-packages (from ipympl) (7.34.0)\n",
+ "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from ipympl) (1.25.2)\n",
+ "Requirement already satisfied: ipython-genutils in /usr/local/lib/python3.10/dist-packages (from ipympl) (0.2.0)\n",
+ "Requirement already satisfied: pillow in /usr/local/lib/python3.10/dist-packages (from ipympl) (9.4.0)\n",
+ "Requirement already satisfied: traitlets<6 in /usr/local/lib/python3.10/dist-packages (from ipympl) (5.7.1)\n",
+ "Requirement already satisfied: ipywidgets<9,>=7.6.0 in /usr/local/lib/python3.10/dist-packages (from ipympl) (7.7.1)\n",
+ "Requirement already satisfied: matplotlib<4,>=3.4.0 in /usr/local/lib/python3.10/dist-packages (from ipympl) (3.7.1)\n",
+ "Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.10/dist-packages (from ipython<9->ipympl) (67.7.2)\n",
+ "Collecting jedi>=0.16 (from ipython<9->ipympl)\n",
+ " Downloading jedi-0.19.1-py2.py3-none-any.whl (1.6 MB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m16.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hRequirement already satisfied: decorator in /usr/local/lib/python3.10/dist-packages (from ipython<9->ipympl) (4.4.2)\n",
+ "Requirement already satisfied: pickleshare in /usr/local/lib/python3.10/dist-packages (from ipython<9->ipympl) (0.7.5)\n",
+ "Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from ipython<9->ipympl) (3.0.43)\n",
+ "Requirement already satisfied: pygments in /usr/local/lib/python3.10/dist-packages (from ipython<9->ipympl) (2.16.1)\n",
+ "Requirement already satisfied: backcall in /usr/local/lib/python3.10/dist-packages (from ipython<9->ipympl) (0.2.0)\n",
+ "Requirement already satisfied: matplotlib-inline in /usr/local/lib/python3.10/dist-packages (from ipython<9->ipympl) (0.1.6)\n",
+ "Requirement already satisfied: pexpect>4.3 in /usr/local/lib/python3.10/dist-packages (from ipython<9->ipympl) (4.9.0)\n",
+ "Requirement already satisfied: ipykernel>=4.5.1 in /usr/local/lib/python3.10/dist-packages (from ipywidgets<9,>=7.6.0->ipympl) (5.5.6)\n",
+ "Requirement already satisfied: widgetsnbextension~=3.6.0 in /usr/local/lib/python3.10/dist-packages (from ipywidgets<9,>=7.6.0->ipympl) (3.6.6)\n",
+ "Requirement already satisfied: jupyterlab-widgets>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from ipywidgets<9,>=7.6.0->ipympl) (3.0.10)\n",
+ "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4,>=3.4.0->ipympl) (1.2.0)\n",
+ "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4,>=3.4.0->ipympl) (0.12.1)\n",
+ "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4,>=3.4.0->ipympl) (4.50.0)\n",
+ "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4,>=3.4.0->ipympl) (1.4.5)\n",
+ "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4,>=3.4.0->ipympl) (24.0)\n",
+ "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4,>=3.4.0->ipympl) (3.1.2)\n",
+ "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4,>=3.4.0->ipympl) (2.8.2)\n",
+ "Requirement already satisfied: jupyter-client in /usr/local/lib/python3.10/dist-packages (from ipykernel>=4.5.1->ipywidgets<9,>=7.6.0->ipympl) (6.1.12)\n",
+ "Requirement already satisfied: tornado>=4.2 in /usr/local/lib/python3.10/dist-packages (from ipykernel>=4.5.1->ipywidgets<9,>=7.6.0->ipympl) (6.3.3)\n",
+ "Requirement already satisfied: parso<0.9.0,>=0.8.3 in /usr/local/lib/python3.10/dist-packages (from jedi>=0.16->ipython<9->ipympl) (0.8.3)\n",
+ "Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.10/dist-packages (from pexpect>4.3->ipython<9->ipympl) (0.7.0)\n",
+ "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython<9->ipympl) (0.2.13)\n",
+ "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib<4,>=3.4.0->ipympl) (1.16.0)\n",
+ "Requirement already satisfied: notebook>=4.4.1 in /usr/local/lib/python3.10/dist-packages (from widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (6.5.5)\n",
+ "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (3.1.3)\n",
+ "Requirement already satisfied: pyzmq<25,>=17 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (23.2.1)\n",
+ "Requirement already satisfied: argon2-cffi in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (23.1.0)\n",
+ "Requirement already satisfied: jupyter-core>=4.6.1 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (5.7.2)\n",
+ "Requirement already satisfied: nbformat in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (5.10.3)\n",
+ "Requirement already satisfied: nbconvert>=5 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (6.5.4)\n",
+ "Requirement already satisfied: nest-asyncio>=1.5 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (1.6.0)\n",
+ "Requirement already satisfied: Send2Trash>=1.8.0 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (1.8.2)\n",
+ "Requirement already satisfied: terminado>=0.8.3 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (0.18.1)\n",
+ "Requirement already satisfied: prometheus-client in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (0.20.0)\n",
+ "Requirement already satisfied: nbclassic>=0.4.7 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (1.0.0)\n",
+ "Requirement already satisfied: platformdirs>=2.5 in /usr/local/lib/python3.10/dist-packages (from jupyter-core>=4.6.1->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (4.2.0)\n",
+ "Requirement already satisfied: jupyter-server>=1.8 in /usr/local/lib/python3.10/dist-packages (from nbclassic>=0.4.7->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (1.24.0)\n",
+ "Requirement already satisfied: notebook-shim>=0.2.3 in /usr/local/lib/python3.10/dist-packages (from nbclassic>=0.4.7->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (0.2.4)\n",
+ "Requirement already satisfied: lxml in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (4.9.4)\n",
+ "Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (4.12.3)\n",
+ "Requirement already satisfied: bleach in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (6.1.0)\n",
+ "Requirement already satisfied: defusedxml in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (0.7.1)\n",
+ "Requirement already satisfied: entrypoints>=0.2.2 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (0.4)\n",
+ "Requirement already satisfied: jupyterlab-pygments in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (0.3.0)\n",
+ "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (2.1.5)\n",
+ "Requirement already satisfied: mistune<2,>=0.8.1 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (0.8.4)\n",
+ "Requirement already satisfied: nbclient>=0.5.0 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (0.10.0)\n",
+ "Requirement already satisfied: pandocfilters>=1.4.1 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (1.5.1)\n",
+ "Requirement already satisfied: tinycss2 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (1.2.1)\n",
+ "Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.10/dist-packages (from nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (2.19.1)\n",
+ "Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.10/dist-packages (from nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (4.19.2)\n",
+ "Requirement already satisfied: argon2-cffi-bindings in /usr/local/lib/python3.10/dist-packages (from argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (21.2.0)\n",
+ "Requirement already satisfied: attrs>=22.2.0 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (23.2.0)\n",
+ "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (2023.12.1)\n",
+ "Requirement already satisfied: referencing>=0.28.4 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (0.34.0)\n",
+ "Requirement already satisfied: rpds-py>=0.7.1 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (0.18.0)\n",
+ "Requirement already satisfied: anyio<4,>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from jupyter-server>=1.8->nbclassic>=0.4.7->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (3.7.1)\n",
+ "Requirement already satisfied: websocket-client in /usr/local/lib/python3.10/dist-packages (from jupyter-server>=1.8->nbclassic>=0.4.7->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (1.7.0)\n",
+ "Requirement already satisfied: cffi>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from argon2-cffi-bindings->argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (1.16.0)\n",
+ "Requirement already satisfied: soupsieve>1.2 in /usr/local/lib/python3.10/dist-packages (from beautifulsoup4->nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (2.5)\n",
+ "Requirement already satisfied: webencodings in /usr/local/lib/python3.10/dist-packages (from bleach->nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (0.5.1)\n",
+ "Requirement already satisfied: idna>=2.8 in /usr/local/lib/python3.10/dist-packages (from anyio<4,>=3.1.0->jupyter-server>=1.8->nbclassic>=0.4.7->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (3.6)\n",
+ "Requirement already satisfied: sniffio>=1.1 in /usr/local/lib/python3.10/dist-packages (from anyio<4,>=3.1.0->jupyter-server>=1.8->nbclassic>=0.4.7->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (1.3.1)\n",
+ "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<4,>=3.1.0->jupyter-server>=1.8->nbclassic>=0.4.7->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (1.2.0)\n",
+ "Requirement already satisfied: pycparser in /usr/local/lib/python3.10/dist-packages (from cffi>=1.0.1->argon2-cffi-bindings->argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (2.21)\n",
+ "Installing collected packages: jedi, ipympl\n",
+ "Successfully installed ipympl-0.9.3 jedi-0.19.1\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "from sklearn.model_selection import train_test_split\n",
+ "from catboost import CatBoostClassifier\n",
+ "\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "from google.colab import output\n",
+ "output.disable_custom_widget_manager()\n",
+ "%matplotlib inline\n",
+ "%matplotlib widget"
+ ],
+ "metadata": {
+ "id": "9pjahM2pZ6ze"
+ },
+ "execution_count": 32,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "!unzip /content/dataset.zip"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "v2xiSVszbZ1v",
+ "outputId": "1a14a432-30e1-4de3-b919-b3df10eec0ca"
+ },
+ "execution_count": 7,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Archive: /content/dataset.zip\n",
+ " inflating: dataset.csv \n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "combinet = pd.read_csv(\"/content/dataset.csv\")"
+ ],
+ "metadata": {
+ "id": "17J47bPodeD1"
+ },
+ "execution_count": 16,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "id": "wD74qy8qYL05"
+ },
+ "outputs": [],
+ "source": [
+ "X_train, X_test, y_train, y_test = train_test_split(combinet.drop(['Рабочий'], axis=1), combinet['Рабочий'], test_size = 0.1, random_state = 69)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000,
+ "referenced_widgets": [
+ "aa393e98c6ef47b58dc10a5b91aab35d"
+ ]
+ },
+ "id": "N3a5wulKYL05",
+ "outputId": "41892796-14e6-4cb3-9de9-1fdb0924c910"
+ },
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "MetricVisualizer(layout=Layout(align_self='stretch', height='500px'))"
+ ],
+ "application/vnd.jupyter.widget-view+json": {
+ "version_major": 2,
+ "version_minor": 0,
+ "model_id": "aa393e98c6ef47b58dc10a5b91aab35d"
+ }
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Learning rate set to 0.04202\n",
+ "0:\tlearn: 0.9448978\ttest: 0.9448882\tbest: 0.9448882 (0)\ttotal: 49.1ms\tremaining: 40m 56s\n",
+ "100:\tlearn: 0.9762028\ttest: 0.9760677\tbest: 0.9760677 (100)\ttotal: 4.68s\tremaining: 38m 33s\n",
+ "200:\tlearn: 0.9844888\ttest: 0.9842780\tbest: 0.9842780 (200)\ttotal: 7.4s\tremaining: 30m 33s\n",
+ "300:\tlearn: 0.9881837\ttest: 0.9879439\tbest: 0.9879439 (300)\ttotal: 10.1s\tremaining: 27m 50s\n",
+ "400:\tlearn: 0.9898107\ttest: 0.9895916\tbest: 0.9895916 (400)\ttotal: 12.8s\tremaining: 26m 28s\n",
+ "500:\tlearn: 0.9909452\ttest: 0.9908547\tbest: 0.9908547 (500)\ttotal: 16.5s\tremaining: 27m 11s\n",
+ "600:\tlearn: 0.9919582\ttest: 0.9919096\tbest: 0.9919096 (600)\ttotal: 20s\tremaining: 27m 24s\n",
+ "700:\tlearn: 0.9926572\ttest: 0.9926012\tbest: 0.9926012 (700)\ttotal: 22.7s\tremaining: 26m 36s\n",
+ "800:\tlearn: 0.9933017\ttest: 0.9933139\tbest: 0.9933139 (800)\ttotal: 25.5s\tremaining: 26m 4s\n",
+ "900:\tlearn: 0.9937451\ttest: 0.9936561\tbest: 0.9936561 (900)\ttotal: 28.6s\tremaining: 26m\n",
+ "1000:\tlearn: 0.9941591\ttest: 0.9940901\tbest: 0.9940901 (1000)\ttotal: 32.7s\tremaining: 26m 40s\n",
+ "1100:\tlearn: 0.9944735\ttest: 0.9943830\tbest: 0.9943830 (1100)\ttotal: 35.4s\tremaining: 26m 13s\n",
+ "1200:\tlearn: 0.9947479\ttest: 0.9945523\tbest: 0.9945523 (1200)\ttotal: 38.1s\tremaining: 25m 49s\n",
+ "1300:\tlearn: 0.9950192\ttest: 0.9947852\tbest: 0.9947852 (1300)\ttotal: 40.9s\tremaining: 25m 30s\n",
+ "1400:\tlearn: 0.9952266\ttest: 0.9950040\tbest: 0.9950040 (1400)\ttotal: 45.4s\tremaining: 26m 14s\n",
+ "1500:\tlearn: 0.9954171\ttest: 0.9951486\tbest: 0.9951486 (1500)\ttotal: 48.2s\tremaining: 25m 55s\n",
+ "1600:\tlearn: 0.9956061\ttest: 0.9953074\tbest: 0.9953074 (1600)\ttotal: 50.9s\tremaining: 25m 39s\n",
+ "1700:\tlearn: 0.9957868\ttest: 0.9954309\tbest: 0.9954309 (1700)\ttotal: 53.6s\tremaining: 25m 23s\n",
+ "1800:\tlearn: 0.9959338\ttest: 0.9956143\tbest: 0.9956143 (1800)\ttotal: 58.1s\tremaining: 25m 55s\n",
+ "1900:\tlearn: 0.9960460\ttest: 0.9957519\tbest: 0.9957519 (1900)\ttotal: 1m\tremaining: 25m 38s\n",
+ "2000:\tlearn: 0.9961444\ttest: 0.9957908\tbest: 0.9957908 (2000)\ttotal: 1m 3s\tremaining: 25m 24s\n",
+ "2100:\tlearn: 0.9962353\ttest: 0.9958543\tbest: 0.9958543 (2100)\ttotal: 1m 6s\tremaining: 25m 10s\n",
+ "2200:\tlearn: 0.9963329\ttest: 0.9959354\tbest: 0.9959354 (2200)\ttotal: 1m 10s\tremaining: 25m 37s\n",
+ "2300:\tlearn: 0.9964164\ttest: 0.9960095\tbest: 0.9960095 (2300)\ttotal: 1m 13s\tremaining: 25m 23s\n",
+ "2400:\tlearn: 0.9965007\ttest: 0.9960801\tbest: 0.9960801 (2400)\ttotal: 1m 16s\tremaining: 25m 11s\n",
+ "2500:\tlearn: 0.9965548\ttest: 0.9961401\tbest: 0.9961401 (2500)\ttotal: 1m 19s\tremaining: 25m\n",
+ "2600:\tlearn: 0.9966313\ttest: 0.9962071\tbest: 0.9962071 (2600)\ttotal: 1m 23s\tremaining: 25m 14s\n",
+ "2700:\tlearn: 0.9966760\ttest: 0.9962494\tbest: 0.9962494 (2700)\ttotal: 1m 26s\tremaining: 25m 10s\n",
+ "2800:\tlearn: 0.9967277\ttest: 0.9963165\tbest: 0.9963165 (2800)\ttotal: 1m 29s\tremaining: 24m 59s\n",
+ "2900:\tlearn: 0.9967810\ttest: 0.9963623\tbest: 0.9963623 (2900)\ttotal: 1m 31s\tremaining: 24m 49s\n",
+ "3000:\tlearn: 0.9968367\ttest: 0.9964012\tbest: 0.9964012 (3000)\ttotal: 1m 35s\tremaining: 24m 53s\n",
+ "3100:\tlearn: 0.9968704\ttest: 0.9964294\tbest: 0.9964294 (3100)\ttotal: 1m 39s\tremaining: 24m 57s\n",
+ "3200:\tlearn: 0.9969076\ttest: 0.9964400\tbest: 0.9964400 (3200)\ttotal: 1m 41s\tremaining: 24m 47s\n",
+ "3300:\tlearn: 0.9969586\ttest: 0.9964611\tbest: 0.9964611 (3300)\ttotal: 1m 44s\tremaining: 24m 37s\n",
+ "3400:\tlearn: 0.9970002\ttest: 0.9965246\tbest: 0.9965246 (3400)\ttotal: 1m 47s\tremaining: 24m 28s\n",
+ "3500:\tlearn: 0.9970331\ttest: 0.9965388\tbest: 0.9965388 (3500)\ttotal: 1m 51s\tremaining: 24m 43s\n",
+ "3600:\tlearn: 0.9970652\ttest: 0.9965882\tbest: 0.9965882 (3600)\ttotal: 1m 54s\tremaining: 24m 33s\n",
+ "3700:\tlearn: 0.9970856\ttest: 0.9966164\tbest: 0.9966164 (3700)\ttotal: 1m 57s\tremaining: 24m 23s\n",
+ "3800:\tlearn: 0.9971123\ttest: 0.9966234\tbest: 0.9966234 (3800)\ttotal: 1m 59s\tremaining: 24m 14s\n",
+ "3900:\tlearn: 0.9971397\ttest: 0.9966552\tbest: 0.9966552 (3900)\ttotal: 2m 4s\tremaining: 24m 27s\n",
+ "4000:\tlearn: 0.9971778\ttest: 0.9967011\tbest: 0.9967011 (4000)\ttotal: 2m 6s\tremaining: 24m 18s\n",
+ "4100:\tlearn: 0.9972044\ttest: 0.9967152\tbest: 0.9967152 (4100)\ttotal: 2m 9s\tremaining: 24m 10s\n",
+ "4200:\tlearn: 0.9972291\ttest: 0.9967469\tbest: 0.9967469 (4200)\ttotal: 2m 12s\tremaining: 24m 2s\n",
+ "4300:\tlearn: 0.9972554\ttest: 0.9967575\tbest: 0.9967575 (4300)\ttotal: 2m 16s\tremaining: 24m 13s\n",
+ "4400:\tlearn: 0.9972824\ttest: 0.9967998\tbest: 0.9967998 (4400)\ttotal: 2m 19s\tremaining: 24m 5s\n",
+ "4500:\tlearn: 0.9973036\ttest: 0.9968245\tbest: 0.9968245 (4500)\ttotal: 2m 22s\tremaining: 23m 57s\n",
+ "4600:\tlearn: 0.9973240\ttest: 0.9968104\tbest: 0.9968245 (4500)\ttotal: 2m 24s\tremaining: 23m 50s\n",
+ "4700:\tlearn: 0.9973534\ttest: 0.9968210\tbest: 0.9968245 (4500)\ttotal: 2m 28s\tremaining: 23m 55s\n",
+ "4800:\tlearn: 0.9973687\ttest: 0.9968281\tbest: 0.9968281 (4800)\ttotal: 2m 32s\tremaining: 23m 52s\n",
+ "4900:\tlearn: 0.9973820\ttest: 0.9968387\tbest: 0.9968387 (4900)\ttotal: 2m 34s\tremaining: 23m 44s\n",
+ "5000:\tlearn: 0.9974036\ttest: 0.9968634\tbest: 0.9968634 (5000)\ttotal: 2m 37s\tremaining: 23m 36s\n",
+ "5100:\tlearn: 0.9974255\ttest: 0.9968986\tbest: 0.9968986 (5100)\ttotal: 2m 40s\tremaining: 23m 34s\n",
+ "5200:\tlearn: 0.9974412\ttest: 0.9969269\tbest: 0.9969269 (5200)\ttotal: 2m 44s\tremaining: 23m 38s\n",
+ "5300:\tlearn: 0.9974604\ttest: 0.9969551\tbest: 0.9969551 (5300)\ttotal: 2m 47s\tremaining: 23m 31s\n",
+ "5400:\tlearn: 0.9974784\ttest: 0.9969445\tbest: 0.9969551 (5300)\ttotal: 2m 50s\tremaining: 23m 24s\n",
+ "5500:\tlearn: 0.9975008\ttest: 0.9969516\tbest: 0.9969551 (5300)\ttotal: 2m 52s\tremaining: 23m 17s\n",
+ "5600:\tlearn: 0.9975055\ttest: 0.9969621\tbest: 0.9969621 (5600)\ttotal: 2m 57s\tremaining: 23m 25s\n",
+ "5700:\tlearn: 0.9975259\ttest: 0.9969551\tbest: 0.9969621 (5600)\ttotal: 2m 59s\tremaining: 23m 18s\n",
+ "5800:\tlearn: 0.9975404\ttest: 0.9969692\tbest: 0.9969692 (5800)\ttotal: 3m 2s\tremaining: 23m 12s\n",
+ "5900:\tlearn: 0.9975569\ttest: 0.9969868\tbest: 0.9969868 (5900)\ttotal: 3m 5s\tremaining: 23m 5s\n",
+ "6000:\tlearn: 0.9975780\ttest: 0.9969798\tbest: 0.9969868 (5900)\ttotal: 3m 9s\tremaining: 23m 12s\n",
+ "6100:\tlearn: 0.9975886\ttest: 0.9969939\tbest: 0.9969939 (6100)\ttotal: 3m 12s\tremaining: 23m 6s\n",
+ "6200:\tlearn: 0.9976051\ttest: 0.9970080\tbest: 0.9970080 (6200)\ttotal: 3m 15s\tremaining: 22m 59s\n",
+ "6300:\tlearn: 0.9976137\ttest: 0.9970221\tbest: 0.9970221 (6300)\ttotal: 3m 17s\tremaining: 22m 53s\n",
+ "6400:\tlearn: 0.9976286\ttest: 0.9970045\tbest: 0.9970221 (6300)\ttotal: 3m 22s\tremaining: 22m 59s\n",
+ "6500:\tlearn: 0.9976443\ttest: 0.9970186\tbest: 0.9970221 (6300)\ttotal: 3m 25s\tremaining: 22m 52s\n",
+ "6600:\tlearn: 0.9976572\ttest: 0.9970186\tbest: 0.9970221 (6300)\ttotal: 3m 27s\tremaining: 22m 46s\n",
+ "6700:\tlearn: 0.9976623\ttest: 0.9970433\tbest: 0.9970433 (6700)\ttotal: 3m 30s\tremaining: 22m 40s\n",
+ "6800:\tlearn: 0.9976705\ttest: 0.9970362\tbest: 0.9970433 (6700)\ttotal: 3m 34s\tremaining: 22m 41s\n",
+ "6900:\tlearn: 0.9976858\ttest: 0.9970609\tbest: 0.9970609 (6900)\ttotal: 3m 37s\tremaining: 22m 40s\n",
+ "7000:\tlearn: 0.9977015\ttest: 0.9970786\tbest: 0.9970786 (7000)\ttotal: 3m 40s\tremaining: 22m 34s\n",
+ "7100:\tlearn: 0.9977152\ttest: 0.9970892\tbest: 0.9970892 (7100)\ttotal: 3m 43s\tremaining: 22m 28s\n",
+ "7200:\tlearn: 0.9977341\ttest: 0.9970892\tbest: 0.9970892 (7100)\ttotal: 3m 46s\tremaining: 22m 24s\n",
+ "7300:\tlearn: 0.9977435\ttest: 0.9970892\tbest: 0.9970892 (7100)\ttotal: 3m 50s\tremaining: 22m 26s\n",
+ "7400:\tlearn: 0.9977556\ttest: 0.9971068\tbest: 0.9971068 (7400)\ttotal: 3m 52s\tremaining: 22m 20s\n",
+ "7500:\tlearn: 0.9977627\ttest: 0.9971103\tbest: 0.9971103 (7500)\ttotal: 3m 55s\tremaining: 22m 15s\n",
+ "7600:\tlearn: 0.9977748\ttest: 0.9971280\tbest: 0.9971280 (7600)\ttotal: 3m 58s\tremaining: 22m 9s\n",
+ "7700:\tlearn: 0.9977815\ttest: 0.9971315\tbest: 0.9971315 (7700)\ttotal: 4m 2s\tremaining: 22m 13s\n",
+ "7800:\tlearn: 0.9977936\ttest: 0.9971421\tbest: 0.9971421 (7800)\ttotal: 4m 5s\tremaining: 22m 7s\n",
+ "7900:\tlearn: 0.9978097\ttest: 0.9971491\tbest: 0.9971491 (7900)\ttotal: 4m 8s\tremaining: 22m 2s\n",
+ "8000:\tlearn: 0.9978207\ttest: 0.9971421\tbest: 0.9971491 (7900)\ttotal: 4m 10s\tremaining: 21m 56s\n",
+ "8100:\tlearn: 0.9978270\ttest: 0.9971527\tbest: 0.9971527 (8100)\ttotal: 4m 15s\tremaining: 22m\n",
+ "8200:\tlearn: 0.9978387\ttest: 0.9971562\tbest: 0.9971562 (8200)\ttotal: 4m 18s\tremaining: 21m 55s\n",
+ "8300:\tlearn: 0.9978442\ttest: 0.9971562\tbest: 0.9971562 (8200)\ttotal: 4m 20s\tremaining: 21m 49s\n",
+ "8400:\tlearn: 0.9978517\ttest: 0.9971527\tbest: 0.9971562 (8200)\ttotal: 4m 23s\tremaining: 21m 44s\n",
+ "8500:\tlearn: 0.9978595\ttest: 0.9971491\tbest: 0.9971562 (8200)\ttotal: 4m 27s\tremaining: 21m 44s\n",
+ "8600:\tlearn: 0.9978728\ttest: 0.9971703\tbest: 0.9971703 (8600)\ttotal: 4m 30s\tremaining: 21m 42s\n",
+ "8700:\tlearn: 0.9978783\ttest: 0.9971950\tbest: 0.9971950 (8700)\ttotal: 4m 33s\tremaining: 21m 37s\n",
+ "8800:\tlearn: 0.9978866\ttest: 0.9972021\tbest: 0.9972021 (8800)\ttotal: 4m 36s\tremaining: 21m 32s\n",
+ "8900:\tlearn: 0.9978928\ttest: 0.9971985\tbest: 0.9972021 (8800)\ttotal: 4m 39s\tremaining: 21m 28s\n",
+ "9000:\tlearn: 0.9978987\ttest: 0.9972056\tbest: 0.9972056 (9000)\ttotal: 4m 43s\tremaining: 21m 29s\n",
+ "9100:\tlearn: 0.9979069\ttest: 0.9972021\tbest: 0.9972056 (9000)\ttotal: 4m 45s\tremaining: 21m 24s\n",
+ "9200:\tlearn: 0.9979132\ttest: 0.9972197\tbest: 0.9972197 (9200)\ttotal: 4m 48s\tremaining: 21m 19s\n",
+ "9300:\tlearn: 0.9979179\ttest: 0.9972197\tbest: 0.9972197 (9200)\ttotal: 4m 51s\tremaining: 21m 14s\n",
+ "9400:\tlearn: 0.9979265\ttest: 0.9972197\tbest: 0.9972197 (9200)\ttotal: 4m 55s\tremaining: 21m 17s\n",
+ "9500:\tlearn: 0.9979375\ttest: 0.9972303\tbest: 0.9972303 (9500)\ttotal: 4m 58s\tremaining: 21m 12s\n",
+ "9600:\tlearn: 0.9979461\ttest: 0.9972444\tbest: 0.9972444 (9600)\ttotal: 5m 1s\tremaining: 21m 7s\n",
+ "9700:\tlearn: 0.9979501\ttest: 0.9972550\tbest: 0.9972550 (9700)\ttotal: 5m 3s\tremaining: 21m 2s\n",
+ "9800:\tlearn: 0.9979563\ttest: 0.9972550\tbest: 0.9972550 (9700)\ttotal: 5m 8s\tremaining: 21m 5s\n",
+ "9900:\tlearn: 0.9979634\ttest: 0.9972691\tbest: 0.9972691 (9900)\ttotal: 5m 11s\tremaining: 21m\n",
+ "10000:\tlearn: 0.9979748\ttest: 0.9972762\tbest: 0.9972762 (10000)\ttotal: 5m 13s\tremaining: 20m 55s\n",
+ "10100:\tlearn: 0.9979787\ttest: 0.9972691\tbest: 0.9972762 (10000)\ttotal: 5m 16s\tremaining: 20m 50s\n",
+ "10200:\tlearn: 0.9979948\ttest: 0.9972797\tbest: 0.9972797 (10200)\ttotal: 5m 20s\tremaining: 20m 49s\n",
+ "10300:\tlearn: 0.9980010\ttest: 0.9972832\tbest: 0.9972832 (10300)\ttotal: 5m 23s\tremaining: 20m 47s\n",
+ "10400:\tlearn: 0.9980136\ttest: 0.9972903\tbest: 0.9972903 (10400)\ttotal: 5m 26s\tremaining: 20m 41s\n",
+ "10500:\tlearn: 0.9980183\ttest: 0.9972903\tbest: 0.9972903 (10400)\ttotal: 5m 28s\tremaining: 20m 36s\n",
+ "10600:\tlearn: 0.9980281\ttest: 0.9972938\tbest: 0.9972938 (10600)\ttotal: 5m 31s\tremaining: 20m 32s\n",
+ "10700:\tlearn: 0.9980363\ttest: 0.9972938\tbest: 0.9972938 (10600)\ttotal: 5m 36s\tremaining: 20m 34s\n",
+ "10800:\tlearn: 0.9980492\ttest: 0.9973114\tbest: 0.9973114 (10800)\ttotal: 5m 38s\tremaining: 20m 29s\n",
+ "10900:\tlearn: 0.9980571\ttest: 0.9973079\tbest: 0.9973114 (10800)\ttotal: 5m 41s\tremaining: 20m 24s\n",
+ "11000:\tlearn: 0.9980614\ttest: 0.9973044\tbest: 0.9973114 (10800)\ttotal: 5m 44s\tremaining: 20m 19s\n",
+ "11100:\tlearn: 0.9980661\ttest: 0.9973150\tbest: 0.9973150 (11100)\ttotal: 5m 48s\tremaining: 20m 21s\n",
+ "11200:\tlearn: 0.9980728\ttest: 0.9973185\tbest: 0.9973185 (11200)\ttotal: 5m 51s\tremaining: 20m 16s\n",
+ "11300:\tlearn: 0.9980822\ttest: 0.9973256\tbest: 0.9973256 (11300)\ttotal: 5m 53s\tremaining: 20m 11s\n",
+ "11400:\tlearn: 0.9980884\ttest: 0.9973361\tbest: 0.9973361 (11400)\ttotal: 5m 56s\tremaining: 20m 7s\n",
+ "11500:\tlearn: 0.9980908\ttest: 0.9973432\tbest: 0.9973432 (11500)\ttotal: 6m\tremaining: 20m 8s\n",
+ "11600:\tlearn: 0.9980982\ttest: 0.9973432\tbest: 0.9973432 (11500)\ttotal: 6m 3s\tremaining: 20m 4s\n",
+ "11700:\tlearn: 0.9981061\ttest: 0.9973503\tbest: 0.9973503 (11700)\ttotal: 6m 6s\tremaining: 19m 59s\n",
+ "11800:\tlearn: 0.9981088\ttest: 0.9973467\tbest: 0.9973503 (11700)\ttotal: 6m 9s\tremaining: 19m 54s\n",
+ "11900:\tlearn: 0.9981206\ttest: 0.9973608\tbest: 0.9973608 (11900)\ttotal: 6m 12s\tremaining: 19m 52s\n",
+ "12000:\tlearn: 0.9981245\ttest: 0.9973608\tbest: 0.9973608 (11900)\ttotal: 6m 16s\tremaining: 19m 51s\n",
+ "12100:\tlearn: 0.9981292\ttest: 0.9973538\tbest: 0.9973608 (11900)\ttotal: 6m 18s\tremaining: 19m 46s\n",
+ "12200:\tlearn: 0.9981378\ttest: 0.9973608\tbest: 0.9973608 (11900)\ttotal: 6m 21s\tremaining: 19m 42s\n",
+ "12300:\tlearn: 0.9981414\ttest: 0.9973608\tbest: 0.9973608 (11900)\ttotal: 6m 24s\tremaining: 19m 37s\n",
+ "12400:\tlearn: 0.9981469\ttest: 0.9973608\tbest: 0.9973608 (11900)\ttotal: 6m 28s\tremaining: 19m 38s\n",
+ "12500:\tlearn: 0.9981520\ttest: 0.9973538\tbest: 0.9973608 (11900)\ttotal: 6m 31s\tremaining: 19m 33s\n",
+ "12600:\tlearn: 0.9981637\ttest: 0.9973785\tbest: 0.9973785 (12600)\ttotal: 6m 33s\tremaining: 19m 29s\n",
+ "12700:\tlearn: 0.9981692\ttest: 0.9973750\tbest: 0.9973785 (12600)\ttotal: 6m 36s\tremaining: 19m 24s\n",
+ "12800:\tlearn: 0.9981739\ttest: 0.9973785\tbest: 0.9973785 (12600)\ttotal: 6m 41s\tremaining: 19m 25s\n",
+ "12900:\tlearn: 0.9981790\ttest: 0.9973820\tbest: 0.9973820 (12900)\ttotal: 6m 43s\tremaining: 19m 21s\n",
+ "13000:\tlearn: 0.9981802\ttest: 0.9973961\tbest: 0.9973961 (13000)\ttotal: 6m 46s\tremaining: 19m 16s\n",
+ "13100:\tlearn: 0.9981841\ttest: 0.9974032\tbest: 0.9974032 (13100)\ttotal: 6m 49s\tremaining: 19m 12s\n",
+ "13200:\tlearn: 0.9981888\ttest: 0.9974032\tbest: 0.9974032 (13100)\ttotal: 6m 52s\tremaining: 19m 10s\n",
+ "13300:\tlearn: 0.9981919\ttest: 0.9974067\tbest: 0.9974067 (13300)\ttotal: 6m 56s\tremaining: 19m 8s\n",
+ "13400:\tlearn: 0.9981931\ttest: 0.9974032\tbest: 0.9974067 (13300)\ttotal: 6m 58s\tremaining: 19m 3s\n",
+ "13500:\tlearn: 0.9982029\ttest: 0.9973961\tbest: 0.9974067 (13300)\ttotal: 7m 1s\tremaining: 18m 59s\n",
+ "13600:\tlearn: 0.9982104\ttest: 0.9974032\tbest: 0.9974067 (13300)\ttotal: 7m 4s\tremaining: 18m 54s\n",
+ "13700:\tlearn: 0.9982115\ttest: 0.9974208\tbest: 0.9974208 (13700)\ttotal: 7m 8s\tremaining: 18m 55s\n",
+ "13800:\tlearn: 0.9982198\ttest: 0.9974455\tbest: 0.9974455 (13800)\ttotal: 7m 11s\tremaining: 18m 51s\n",
+ "13900:\tlearn: 0.9982233\ttest: 0.9974491\tbest: 0.9974491 (13900)\ttotal: 7m 13s\tremaining: 18m 46s\n",
+ "14000:\tlearn: 0.9982261\ttest: 0.9974455\tbest: 0.9974491 (13900)\ttotal: 7m 16s\tremaining: 18m 42s\n",
+ "14100:\tlearn: 0.9982351\ttest: 0.9974455\tbest: 0.9974491 (13900)\ttotal: 7m 21s\tremaining: 18m 42s\n",
+ "14200:\tlearn: 0.9982366\ttest: 0.9974596\tbest: 0.9974596 (14200)\ttotal: 7m 23s\tremaining: 18m 38s\n",
+ "14300:\tlearn: 0.9982406\ttest: 0.9974667\tbest: 0.9974667 (14300)\ttotal: 7m 26s\tremaining: 18m 34s\n",
+ "14400:\tlearn: 0.9982476\ttest: 0.9974632\tbest: 0.9974667 (14300)\ttotal: 7m 28s\tremaining: 18m 29s\n",
+ "14500:\tlearn: 0.9982531\ttest: 0.9974667\tbest: 0.9974667 (14300)\ttotal: 7m 33s\tremaining: 18m 29s\n",
+ "14600:\tlearn: 0.9982558\ttest: 0.9974667\tbest: 0.9974667 (14300)\ttotal: 7m 36s\tremaining: 18m 26s\n",
+ "14700:\tlearn: 0.9982594\ttest: 0.9974667\tbest: 0.9974667 (14300)\ttotal: 7m 38s\tremaining: 18m 21s\n",
+ "14800:\tlearn: 0.9982676\ttest: 0.9974667\tbest: 0.9974667 (14300)\ttotal: 7m 41s\tremaining: 18m 17s\n",
+ "14900:\tlearn: 0.9982723\ttest: 0.9974702\tbest: 0.9974702 (14900)\ttotal: 7m 44s\tremaining: 18m 13s\n",
+ "15000:\tlearn: 0.9982747\ttest: 0.9974667\tbest: 0.9974702 (14900)\ttotal: 7m 48s\tremaining: 18m 13s\n",
+ "15100:\tlearn: 0.9982782\ttest: 0.9974737\tbest: 0.9974737 (15100)\ttotal: 7m 51s\tremaining: 18m 8s\n",
+ "15200:\tlearn: 0.9982856\ttest: 0.9974702\tbest: 0.9974737 (15100)\ttotal: 7m 53s\tremaining: 18m 4s\n",
+ "15300:\tlearn: 0.9982884\ttest: 0.9974773\tbest: 0.9974773 (15300)\ttotal: 7m 56s\tremaining: 18m\n",
+ "15400:\tlearn: 0.9982915\ttest: 0.9974702\tbest: 0.9974773 (15300)\ttotal: 8m\tremaining: 18m\n",
+ "15500:\tlearn: 0.9982962\ttest: 0.9974773\tbest: 0.9974773 (15300)\ttotal: 8m 3s\tremaining: 17m 56s\n",
+ "15600:\tlearn: 0.9982994\ttest: 0.9974808\tbest: 0.9974808 (15600)\ttotal: 8m 6s\tremaining: 17m 52s\n",
+ "15700:\tlearn: 0.9983052\ttest: 0.9974879\tbest: 0.9974879 (15700)\ttotal: 8m 8s\tremaining: 17m 47s\n",
+ "15800:\tlearn: 0.9983072\ttest: 0.9974843\tbest: 0.9974879 (15700)\ttotal: 8m 13s\tremaining: 17m 47s\n",
+ "15900:\tlearn: 0.9983123\ttest: 0.9974843\tbest: 0.9974879 (15700)\ttotal: 8m 15s\tremaining: 17m 43s\n",
+ "16000:\tlearn: 0.9983127\ttest: 0.9974843\tbest: 0.9974879 (15700)\ttotal: 8m 18s\tremaining: 17m 39s\n",
+ "16100:\tlearn: 0.9983166\ttest: 0.9974949\tbest: 0.9974949 (16100)\ttotal: 8m 21s\tremaining: 17m 35s\n",
+ "16200:\tlearn: 0.9983201\ttest: 0.9974984\tbest: 0.9974984 (16200)\ttotal: 8m 24s\tremaining: 17m 32s\n",
+ "16300:\tlearn: 0.9983229\ttest: 0.9974984\tbest: 0.9974984 (16200)\ttotal: 8m 28s\tremaining: 17m 30s\n",
+ "16400:\tlearn: 0.9983311\ttest: 0.9975020\tbest: 0.9975020 (16400)\ttotal: 8m 31s\tremaining: 17m 26s\n",
+ "16500:\tlearn: 0.9983378\ttest: 0.9975055\tbest: 0.9975055 (16500)\ttotal: 8m 33s\tremaining: 17m 22s\n",
+ "16600:\tlearn: 0.9983437\ttest: 0.9975055\tbest: 0.9975055 (16500)\ttotal: 8m 36s\tremaining: 17m 18s\n",
+ "16700:\tlearn: 0.9983452\ttest: 0.9975161\tbest: 0.9975161 (16700)\ttotal: 8m 40s\tremaining: 17m 18s\n",
+ "16800:\tlearn: 0.9983488\ttest: 0.9975090\tbest: 0.9975161 (16700)\ttotal: 8m 43s\tremaining: 17m 14s\n",
+ "16900:\tlearn: 0.9983515\ttest: 0.9975161\tbest: 0.9975161 (16700)\ttotal: 8m 46s\tremaining: 17m 10s\n",
+ "17000:\tlearn: 0.9983546\ttest: 0.9975161\tbest: 0.9975161 (16700)\ttotal: 8m 48s\tremaining: 17m 6s\n",
+ "17100:\tlearn: 0.9983586\ttest: 0.9975126\tbest: 0.9975161 (16700)\ttotal: 8m 52s\tremaining: 17m 5s\n",
+ "17200:\tlearn: 0.9983605\ttest: 0.9975161\tbest: 0.9975161 (16700)\ttotal: 8m 55s\tremaining: 17m 1s\n",
+ "17300:\tlearn: 0.9983640\ttest: 0.9975126\tbest: 0.9975161 (16700)\ttotal: 8m 58s\tremaining: 16m 57s\n",
+ "17400:\tlearn: 0.9983688\ttest: 0.9975231\tbest: 0.9975231 (17400)\ttotal: 9m 1s\tremaining: 16m 53s\n",
+ "17500:\tlearn: 0.9983672\ttest: 0.9975161\tbest: 0.9975231 (17400)\ttotal: 9m 4s\tremaining: 16m 50s\n",
+ "17600:\tlearn: 0.9983735\ttest: 0.9975196\tbest: 0.9975231 (17400)\ttotal: 9m 8s\tremaining: 16m 48s\n",
+ "17700:\tlearn: 0.9983731\ttest: 0.9975196\tbest: 0.9975231 (17400)\ttotal: 9m 10s\tremaining: 16m 44s\n",
+ "17800:\tlearn: 0.9983774\ttest: 0.9975196\tbest: 0.9975231 (17400)\ttotal: 9m 13s\tremaining: 16m 41s\n",
+ "17900:\tlearn: 0.9983770\ttest: 0.9975231\tbest: 0.9975231 (17400)\ttotal: 9m 16s\tremaining: 16m 37s\n",
+ "18000:\tlearn: 0.9983793\ttest: 0.9975231\tbest: 0.9975231 (17400)\ttotal: 9m 20s\tremaining: 16m 36s\n",
+ "18100:\tlearn: 0.9983829\ttest: 0.9975302\tbest: 0.9975302 (18100)\ttotal: 9m 23s\tremaining: 16m 32s\n",
+ "18200:\tlearn: 0.9983872\ttest: 0.9975231\tbest: 0.9975302 (18100)\ttotal: 9m 25s\tremaining: 16m 28s\n",
+ "18300:\tlearn: 0.9983899\ttest: 0.9975302\tbest: 0.9975302 (18100)\ttotal: 9m 28s\tremaining: 16m 24s\n",
+ "18400:\tlearn: 0.9983978\ttest: 0.9975196\tbest: 0.9975302 (18100)\ttotal: 9m 32s\tremaining: 16m 23s\n",
+ "18500:\tlearn: 0.9984029\ttest: 0.9975196\tbest: 0.9975302 (18100)\ttotal: 9m 35s\tremaining: 16m 19s\n",
+ "18600:\tlearn: 0.9984048\ttest: 0.9975267\tbest: 0.9975302 (18100)\ttotal: 9m 38s\tremaining: 16m 16s\n",
+ "18700:\tlearn: 0.9984087\ttest: 0.9975231\tbest: 0.9975302 (18100)\ttotal: 9m 40s\tremaining: 16m 12s\n",
+ "18800:\tlearn: 0.9984142\ttest: 0.9975267\tbest: 0.9975302 (18100)\ttotal: 9m 43s\tremaining: 16m 9s\n",
+ "18900:\tlearn: 0.9984174\ttest: 0.9975267\tbest: 0.9975302 (18100)\ttotal: 9m 47s\tremaining: 16m 7s\n",
+ "19000:\tlearn: 0.9984193\ttest: 0.9975373\tbest: 0.9975373 (19000)\ttotal: 9m 50s\tremaining: 16m 3s\n",
+ "19100:\tlearn: 0.9984221\ttest: 0.9975302\tbest: 0.9975373 (19000)\ttotal: 9m 53s\tremaining: 15m 59s\n",
+ "19200:\tlearn: 0.9984279\ttest: 0.9975267\tbest: 0.9975373 (19000)\ttotal: 9m 55s\tremaining: 15m 55s\n",
+ "19300:\tlearn: 0.9984303\ttest: 0.9975337\tbest: 0.9975373 (19000)\ttotal: 10m\tremaining: 15m 54s\n",
+ "19400:\tlearn: 0.9984315\ttest: 0.9975267\tbest: 0.9975373 (19000)\ttotal: 10m 2s\tremaining: 15m 50s\n",
+ "19500:\tlearn: 0.9984342\ttest: 0.9975337\tbest: 0.9975373 (19000)\ttotal: 10m 5s\tremaining: 15m 46s\n",
+ "19600:\tlearn: 0.9984358\ttest: 0.9975337\tbest: 0.9975373 (19000)\ttotal: 10m 8s\tremaining: 15m 43s\n",
+ "19700:\tlearn: 0.9984366\ttest: 0.9975373\tbest: 0.9975373 (19000)\ttotal: 10m 12s\tremaining: 15m 41s\n",
+ "19800:\tlearn: 0.9984409\ttest: 0.9975408\tbest: 0.9975408 (19800)\ttotal: 10m 15s\tremaining: 15m 38s\n",
+ "19900:\tlearn: 0.9984425\ttest: 0.9975443\tbest: 0.9975443 (19900)\ttotal: 10m 17s\tremaining: 15m 34s\n",
+ "20000:\tlearn: 0.9984472\ttest: 0.9975443\tbest: 0.9975443 (19900)\ttotal: 10m 20s\tremaining: 15m 30s\n",
+ "20100:\tlearn: 0.9984499\ttest: 0.9975443\tbest: 0.9975443 (19900)\ttotal: 10m 23s\tremaining: 15m 27s\n",
+ "20200:\tlearn: 0.9984562\ttest: 0.9975478\tbest: 0.9975478 (20200)\ttotal: 10m 27s\tremaining: 15m 25s\n",
+ "20300:\tlearn: 0.9984609\ttest: 0.9975478\tbest: 0.9975478 (20200)\ttotal: 10m 30s\tremaining: 15m 21s\n",
+ "20400:\tlearn: 0.9984617\ttest: 0.9975443\tbest: 0.9975478 (20200)\ttotal: 10m 32s\tremaining: 15m 17s\n",
+ "20500:\tlearn: 0.9984644\ttest: 0.9975443\tbest: 0.9975478 (20200)\ttotal: 10m 35s\tremaining: 15m 14s\n",
+ "20600:\tlearn: 0.9984707\ttest: 0.9975478\tbest: 0.9975478 (20200)\ttotal: 10m 39s\tremaining: 15m 12s\n",
+ "20700:\tlearn: 0.9984726\ttest: 0.9975478\tbest: 0.9975478 (20200)\ttotal: 10m 42s\tremaining: 15m 8s\n",
+ "20800:\tlearn: 0.9984754\ttest: 0.9975514\tbest: 0.9975514 (20800)\ttotal: 10m 44s\tremaining: 15m 5s\n",
+ "20900:\tlearn: 0.9984793\ttest: 0.9975584\tbest: 0.9975584 (20900)\ttotal: 10m 47s\tremaining: 15m 1s\n",
+ "21000:\tlearn: 0.9984832\ttest: 0.9975620\tbest: 0.9975620 (21000)\ttotal: 10m 51s\tremaining: 14m 59s\n",
+ "21100:\tlearn: 0.9984836\ttest: 0.9975549\tbest: 0.9975620 (21000)\ttotal: 10m 54s\tremaining: 14m 56s\n",
+ "21200:\tlearn: 0.9984864\ttest: 0.9975584\tbest: 0.9975620 (21000)\ttotal: 10m 57s\tremaining: 14m 52s\n",
+ "21300:\tlearn: 0.9984891\ttest: 0.9975584\tbest: 0.9975620 (21000)\ttotal: 10m 59s\tremaining: 14m 48s\n",
+ "21400:\tlearn: 0.9984911\ttest: 0.9975584\tbest: 0.9975620 (21000)\ttotal: 11m 2s\tremaining: 14m 45s\n",
+ "21500:\tlearn: 0.9984926\ttest: 0.9975655\tbest: 0.9975655 (21500)\ttotal: 11m 6s\tremaining: 14m 43s\n",
+ "21600:\tlearn: 0.9984966\ttest: 0.9975690\tbest: 0.9975690 (21600)\ttotal: 11m 9s\tremaining: 14m 39s\n",
+ "21700:\tlearn: 0.9984966\ttest: 0.9975725\tbest: 0.9975725 (21700)\ttotal: 11m 11s\tremaining: 14m 36s\n",
+ "21800:\tlearn: 0.9984993\ttest: 0.9975690\tbest: 0.9975725 (21700)\ttotal: 11m 14s\tremaining: 14m 32s\n",
+ "21900:\tlearn: 0.9985013\ttest: 0.9975725\tbest: 0.9975725 (21700)\ttotal: 11m 18s\tremaining: 14m 31s\n",
+ "22000:\tlearn: 0.9985083\ttest: 0.9975761\tbest: 0.9975761 (22000)\ttotal: 11m 21s\tremaining: 14m 27s\n",
+ "22100:\tlearn: 0.9985099\ttest: 0.9975796\tbest: 0.9975796 (22100)\ttotal: 11m 24s\tremaining: 14m 23s\n",
+ "22200:\tlearn: 0.9985122\ttest: 0.9975831\tbest: 0.9975831 (22200)\ttotal: 11m 26s\tremaining: 14m 20s\n",
+ "22300:\tlearn: 0.9985162\ttest: 0.9975867\tbest: 0.9975867 (22300)\ttotal: 11m 30s\tremaining: 14m 17s\n",
+ "22400:\tlearn: 0.9985173\ttest: 0.9975831\tbest: 0.9975867 (22300)\ttotal: 11m 33s\tremaining: 14m 14s\n",
+ "22500:\tlearn: 0.9985177\ttest: 0.9975937\tbest: 0.9975937 (22500)\ttotal: 11m 36s\tremaining: 14m 11s\n",
+ "22600:\tlearn: 0.9985185\ttest: 0.9975902\tbest: 0.9975937 (22500)\ttotal: 11m 39s\tremaining: 14m 7s\n",
+ "22700:\tlearn: 0.9985236\ttest: 0.9975972\tbest: 0.9975972 (22700)\ttotal: 11m 41s\tremaining: 14m 3s\n",
+ "22800:\tlearn: 0.9985271\ttest: 0.9976008\tbest: 0.9976008 (22800)\ttotal: 11m 46s\tremaining: 14m 2s\n",
+ "22900:\tlearn: 0.9985271\ttest: 0.9976008\tbest: 0.9976008 (22800)\ttotal: 11m 48s\tremaining: 13m 58s\n",
+ "23000:\tlearn: 0.9985303\ttest: 0.9975902\tbest: 0.9976008 (22800)\ttotal: 11m 51s\tremaining: 13m 55s\n",
+ "23100:\tlearn: 0.9985326\ttest: 0.9976008\tbest: 0.9976008 (22800)\ttotal: 11m 54s\tremaining: 13m 51s\n",
+ "23200:\tlearn: 0.9985350\ttest: 0.9976008\tbest: 0.9976008 (22800)\ttotal: 11m 58s\tremaining: 13m 49s\n",
+ "23300:\tlearn: 0.9985373\ttest: 0.9976043\tbest: 0.9976043 (23300)\ttotal: 12m 1s\tremaining: 13m 46s\n",
+ "23400:\tlearn: 0.9985409\ttest: 0.9976043\tbest: 0.9976043 (23300)\ttotal: 12m 3s\tremaining: 13m 42s\n",
+ "23500:\tlearn: 0.9985444\ttest: 0.9976008\tbest: 0.9976043 (23300)\ttotal: 12m 6s\tremaining: 13m 38s\n",
+ "23600:\tlearn: 0.9985456\ttest: 0.9976008\tbest: 0.9976043 (23300)\ttotal: 12m 9s\tremaining: 13m 35s\n",
+ "23700:\tlearn: 0.9985499\ttest: 0.9976078\tbest: 0.9976078 (23700)\ttotal: 12m 13s\tremaining: 13m 33s\n",
+ "23800:\tlearn: 0.9985522\ttest: 0.9976008\tbest: 0.9976078 (23700)\ttotal: 12m 15s\tremaining: 13m 29s\n",
+ "23900:\tlearn: 0.9985573\ttest: 0.9976184\tbest: 0.9976184 (23900)\ttotal: 12m 18s\tremaining: 13m 26s\n",
+ "24000:\tlearn: 0.9985581\ttest: 0.9976219\tbest: 0.9976219 (24000)\ttotal: 12m 21s\tremaining: 13m 22s\n",
+ "24100:\tlearn: 0.9985581\ttest: 0.9976325\tbest: 0.9976325 (24100)\ttotal: 12m 25s\tremaining: 13m 21s\n",
+ "24200:\tlearn: 0.9985644\ttest: 0.9976290\tbest: 0.9976325 (24100)\ttotal: 12m 28s\tremaining: 13m 17s\n",
+ "24300:\tlearn: 0.9985640\ttest: 0.9976325\tbest: 0.9976325 (24100)\ttotal: 12m 30s\tremaining: 13m 13s\n",
+ "24400:\tlearn: 0.9985683\ttest: 0.9976255\tbest: 0.9976325 (24100)\ttotal: 12m 33s\tremaining: 13m 10s\n",
+ "24500:\tlearn: 0.9985714\ttest: 0.9976290\tbest: 0.9976325 (24100)\ttotal: 12m 37s\tremaining: 13m 7s\n",
+ "24600:\tlearn: 0.9985706\ttest: 0.9976290\tbest: 0.9976325 (24100)\ttotal: 12m 40s\tremaining: 13m 4s\n",
+ "24700:\tlearn: 0.9985746\ttest: 0.9976255\tbest: 0.9976325 (24100)\ttotal: 12m 42s\tremaining: 13m 1s\n",
+ "24800:\tlearn: 0.9985777\ttest: 0.9976219\tbest: 0.9976325 (24100)\ttotal: 12m 45s\tremaining: 12m 57s\n",
+ "24900:\tlearn: 0.9985789\ttest: 0.9976290\tbest: 0.9976325 (24100)\ttotal: 12m 48s\tremaining: 12m 54s\n",
+ "25000:\tlearn: 0.9985801\ttest: 0.9976361\tbest: 0.9976361 (25000)\ttotal: 12m 52s\tremaining: 12m 52s\n",
+ "25100:\tlearn: 0.9985840\ttest: 0.9976219\tbest: 0.9976361 (25000)\ttotal: 12m 55s\tremaining: 12m 48s\n",
+ "25200:\tlearn: 0.9985832\ttest: 0.9976431\tbest: 0.9976431 (25200)\ttotal: 12m 57s\tremaining: 12m 45s\n",
+ "25300:\tlearn: 0.9985879\ttest: 0.9976396\tbest: 0.9976431 (25200)\ttotal: 13m\tremaining: 12m 41s\n",
+ "25400:\tlearn: 0.9985875\ttest: 0.9976361\tbest: 0.9976431 (25200)\ttotal: 13m 4s\tremaining: 12m 39s\n",
+ "25500:\tlearn: 0.9985930\ttest: 0.9976290\tbest: 0.9976431 (25200)\ttotal: 13m 7s\tremaining: 12m 36s\n",
+ "25600:\tlearn: 0.9985973\ttest: 0.9976325\tbest: 0.9976431 (25200)\ttotal: 13m 9s\tremaining: 12m 32s\n",
+ "25700:\tlearn: 0.9985985\ttest: 0.9976431\tbest: 0.9976431 (25200)\ttotal: 13m 12s\tremaining: 12m 29s\n",
+ "25800:\tlearn: 0.9986016\ttest: 0.9976361\tbest: 0.9976431 (25200)\ttotal: 13m 15s\tremaining: 12m 26s\n",
+ "25900:\tlearn: 0.9986055\ttest: 0.9976466\tbest: 0.9976466 (25900)\ttotal: 13m 19s\tremaining: 12m 23s\n",
+ "26000:\tlearn: 0.9986055\ttest: 0.9976466\tbest: 0.9976466 (25900)\ttotal: 13m 22s\tremaining: 12m 20s\n",
+ "26100:\tlearn: 0.9986091\ttest: 0.9976537\tbest: 0.9976537 (26100)\ttotal: 13m 24s\tremaining: 12m 16s\n",
+ "26200:\tlearn: 0.9986102\ttest: 0.9976466\tbest: 0.9976537 (26100)\ttotal: 13m 27s\tremaining: 12m 13s\n",
+ "26300:\tlearn: 0.9986126\ttest: 0.9976572\tbest: 0.9976572 (26300)\ttotal: 13m 31s\tremaining: 12m 11s\n",
+ "26400:\tlearn: 0.9986138\ttest: 0.9976466\tbest: 0.9976572 (26300)\ttotal: 13m 34s\tremaining: 12m 7s\n",
+ "26500:\tlearn: 0.9986149\ttest: 0.9976466\tbest: 0.9976572 (26300)\ttotal: 13m 36s\tremaining: 12m 4s\n",
+ "26600:\tlearn: 0.9986169\ttest: 0.9976502\tbest: 0.9976572 (26300)\ttotal: 13m 39s\tremaining: 12m\n",
+ "26700:\tlearn: 0.9986212\ttest: 0.9976431\tbest: 0.9976572 (26300)\ttotal: 13m 43s\tremaining: 11m 58s\n",
+ "26800:\tlearn: 0.9986232\ttest: 0.9976431\tbest: 0.9976572 (26300)\ttotal: 13m 46s\tremaining: 11m 55s\n",
+ "26900:\tlearn: 0.9986224\ttest: 0.9976431\tbest: 0.9976572 (26300)\ttotal: 13m 49s\tremaining: 11m 51s\n",
+ "27000:\tlearn: 0.9986255\ttest: 0.9976502\tbest: 0.9976572 (26300)\ttotal: 13m 51s\tremaining: 11m 48s\n",
+ "27100:\tlearn: 0.9986271\ttest: 0.9976466\tbest: 0.9976572 (26300)\ttotal: 13m 54s\tremaining: 11m 45s\n",
+ "27200:\tlearn: 0.9986295\ttest: 0.9976466\tbest: 0.9976572 (26300)\ttotal: 13m 58s\tremaining: 11m 43s\n",
+ "27300:\tlearn: 0.9986330\ttest: 0.9976502\tbest: 0.9976572 (26300)\ttotal: 14m 1s\tremaining: 11m 39s\n",
+ "27400:\tlearn: 0.9986326\ttest: 0.9976502\tbest: 0.9976572 (26300)\ttotal: 14m 3s\tremaining: 11m 36s\n",
+ "27500:\tlearn: 0.9986345\ttest: 0.9976502\tbest: 0.9976572 (26300)\ttotal: 14m 6s\tremaining: 11m 32s\n",
+ "27600:\tlearn: 0.9986389\ttest: 0.9976431\tbest: 0.9976572 (26300)\ttotal: 14m 11s\tremaining: 11m 30s\n",
+ "27700:\tlearn: 0.9986393\ttest: 0.9976502\tbest: 0.9976572 (26300)\ttotal: 14m 13s\tremaining: 11m 27s\n",
+ "27800:\tlearn: 0.9986420\ttest: 0.9976537\tbest: 0.9976572 (26300)\ttotal: 14m 16s\tremaining: 11m 23s\n",
+ "27900:\tlearn: 0.9986420\ttest: 0.9976502\tbest: 0.9976572 (26300)\ttotal: 14m 18s\tremaining: 11m 20s\n",
+ "28000:\tlearn: 0.9986440\ttest: 0.9976607\tbest: 0.9976607 (28000)\ttotal: 14m 22s\tremaining: 11m 17s\n",
+ "28100:\tlearn: 0.9986444\ttest: 0.9976643\tbest: 0.9976643 (28100)\ttotal: 14m 25s\tremaining: 11m 14s\n",
+ "28200:\tlearn: 0.9986487\ttest: 0.9976572\tbest: 0.9976643 (28100)\ttotal: 14m 28s\tremaining: 11m 11s\n",
+ "28300:\tlearn: 0.9986514\ttest: 0.9976607\tbest: 0.9976643 (28100)\ttotal: 14m 31s\tremaining: 11m 7s\n",
+ "28400:\tlearn: 0.9986538\ttest: 0.9976607\tbest: 0.9976643 (28100)\ttotal: 14m 33s\tremaining: 11m 4s\n",
+ "28500:\tlearn: 0.9986557\ttest: 0.9976607\tbest: 0.9976643 (28100)\ttotal: 14m 38s\tremaining: 11m 2s\n",
+ "28600:\tlearn: 0.9986596\ttest: 0.9976643\tbest: 0.9976643 (28100)\ttotal: 14m 40s\tremaining: 10m 58s\n",
+ "28700:\tlearn: 0.9986616\ttest: 0.9976749\tbest: 0.9976749 (28700)\ttotal: 14m 43s\tremaining: 10m 55s\n",
+ "28800:\tlearn: 0.9986640\ttest: 0.9976819\tbest: 0.9976819 (28800)\ttotal: 14m 45s\tremaining: 10m 52s\n",
+ "28900:\tlearn: 0.9986655\ttest: 0.9976784\tbest: 0.9976819 (28800)\ttotal: 14m 50s\tremaining: 10m 50s\n",
+ "29000:\tlearn: 0.9986667\ttest: 0.9976854\tbest: 0.9976854 (29000)\ttotal: 14m 53s\tremaining: 10m 46s\n",
+ "29100:\tlearn: 0.9986667\ttest: 0.9976749\tbest: 0.9976854 (29000)\ttotal: 14m 55s\tremaining: 10m 43s\n",
+ "29200:\tlearn: 0.9986667\ttest: 0.9976784\tbest: 0.9976854 (29000)\ttotal: 14m 58s\tremaining: 10m 39s\n",
+ "29300:\tlearn: 0.9986706\ttest: 0.9976713\tbest: 0.9976854 (29000)\ttotal: 15m 1s\tremaining: 10m 36s\n",
+ "29400:\tlearn: 0.9986730\ttest: 0.9976713\tbest: 0.9976854 (29000)\ttotal: 15m 5s\tremaining: 10m 34s\n",
+ "29500:\tlearn: 0.9986741\ttest: 0.9976678\tbest: 0.9976854 (29000)\ttotal: 15m 7s\tremaining: 10m 30s\n",
+ "29600:\tlearn: 0.9986765\ttest: 0.9976749\tbest: 0.9976854 (29000)\ttotal: 15m 10s\tremaining: 10m 27s\n",
+ "29700:\tlearn: 0.9986773\ttest: 0.9976819\tbest: 0.9976854 (29000)\ttotal: 15m 13s\tremaining: 10m 24s\n",
+ "29800:\tlearn: 0.9986792\ttest: 0.9976749\tbest: 0.9976854 (29000)\ttotal: 15m 17s\tremaining: 10m 21s\n",
+ "29900:\tlearn: 0.9986781\ttest: 0.9976749\tbest: 0.9976854 (29000)\ttotal: 15m 20s\tremaining: 10m 18s\n",
+ "30000:\tlearn: 0.9986812\ttest: 0.9976890\tbest: 0.9976890 (30000)\ttotal: 15m 22s\tremaining: 10m 15s\n",
+ "30100:\tlearn: 0.9986820\ttest: 0.9976890\tbest: 0.9976890 (30000)\ttotal: 15m 25s\tremaining: 10m 11s\n",
+ "30200:\tlearn: 0.9986859\ttest: 0.9976890\tbest: 0.9976890 (30000)\ttotal: 15m 29s\tremaining: 10m 9s\n",
+ "30300:\tlearn: 0.9986883\ttest: 0.9976854\tbest: 0.9976890 (30000)\ttotal: 15m 32s\tremaining: 10m 6s\n",
+ "30400:\tlearn: 0.9986910\ttest: 0.9976890\tbest: 0.9976890 (30000)\ttotal: 15m 34s\tremaining: 10m 2s\n",
+ "30500:\tlearn: 0.9986918\ttest: 0.9976890\tbest: 0.9976890 (30000)\ttotal: 15m 37s\tremaining: 9m 59s\n",
+ "30600:\tlearn: 0.9986949\ttest: 0.9976854\tbest: 0.9976890 (30000)\ttotal: 15m 40s\tremaining: 9m 56s\n",
+ "30700:\tlearn: 0.9986953\ttest: 0.9976890\tbest: 0.9976890 (30000)\ttotal: 15m 44s\tremaining: 9m 53s\n",
+ "30800:\tlearn: 0.9986957\ttest: 0.9976819\tbest: 0.9976890 (30000)\ttotal: 15m 47s\tremaining: 9m 50s\n",
+ "30900:\tlearn: 0.9987000\ttest: 0.9976819\tbest: 0.9976890 (30000)\ttotal: 15m 49s\tremaining: 9m 47s\n",
+ "31000:\tlearn: 0.9986985\ttest: 0.9976854\tbest: 0.9976890 (30000)\ttotal: 15m 52s\tremaining: 9m 43s\n",
+ "31100:\tlearn: 0.9987020\ttest: 0.9976925\tbest: 0.9976925 (31100)\ttotal: 15m 56s\tremaining: 9m 41s\n",
+ "31200:\tlearn: 0.9987012\ttest: 0.9976890\tbest: 0.9976925 (31100)\ttotal: 15m 59s\tremaining: 9m 38s\n",
+ "31300:\tlearn: 0.9987028\ttest: 0.9976960\tbest: 0.9976960 (31300)\ttotal: 16m 2s\tremaining: 9m 34s\n",
+ "31400:\tlearn: 0.9987032\ttest: 0.9976996\tbest: 0.9976996 (31400)\ttotal: 16m 4s\tremaining: 9m 31s\n",
+ "31500:\tlearn: 0.9987035\ttest: 0.9976925\tbest: 0.9976996 (31400)\ttotal: 16m 8s\tremaining: 9m 28s\n",
+ "31600:\tlearn: 0.9987063\ttest: 0.9976925\tbest: 0.9976996 (31400)\ttotal: 16m 11s\tremaining: 9m 25s\n",
+ "31700:\tlearn: 0.9987090\ttest: 0.9976996\tbest: 0.9976996 (31400)\ttotal: 16m 14s\tremaining: 9m 22s\n",
+ "31800:\tlearn: 0.9987090\ttest: 0.9976996\tbest: 0.9976996 (31400)\ttotal: 16m 16s\tremaining: 9m 19s\n",
+ "31900:\tlearn: 0.9987130\ttest: 0.9977066\tbest: 0.9977066 (31900)\ttotal: 16m 19s\tremaining: 9m 15s\n",
+ "32000:\tlearn: 0.9987161\ttest: 0.9977031\tbest: 0.9977066 (31900)\ttotal: 16m 23s\tremaining: 9m 13s\n",
+ "32100:\tlearn: 0.9987169\ttest: 0.9976996\tbest: 0.9977066 (31900)\ttotal: 16m 26s\tremaining: 9m 9s\n",
+ "32200:\tlearn: 0.9987181\ttest: 0.9977066\tbest: 0.9977066 (31900)\ttotal: 16m 28s\tremaining: 9m 6s\n",
+ "32300:\tlearn: 0.9987228\ttest: 0.9977101\tbest: 0.9977101 (32300)\ttotal: 16m 31s\tremaining: 9m 3s\n",
+ "32400:\tlearn: 0.9987228\ttest: 0.9977066\tbest: 0.9977101 (32300)\ttotal: 16m 35s\tremaining: 9m\n",
+ "32500:\tlearn: 0.9987271\ttest: 0.9977101\tbest: 0.9977101 (32300)\ttotal: 16m 38s\tremaining: 8m 57s\n",
+ "32600:\tlearn: 0.9987259\ttest: 0.9977101\tbest: 0.9977101 (32300)\ttotal: 16m 41s\tremaining: 8m 54s\n",
+ "32700:\tlearn: 0.9987271\ttest: 0.9977031\tbest: 0.9977101 (32300)\ttotal: 16m 43s\tremaining: 8m 50s\n",
+ "32800:\tlearn: 0.9987282\ttest: 0.9977031\tbest: 0.9977101 (32300)\ttotal: 16m 47s\tremaining: 8m 48s\n",
+ "32900:\tlearn: 0.9987322\ttest: 0.9977031\tbest: 0.9977101 (32300)\ttotal: 16m 50s\tremaining: 8m 45s\n",
+ "33000:\tlearn: 0.9987333\ttest: 0.9977031\tbest: 0.9977101 (32300)\ttotal: 16m 53s\tremaining: 8m 41s\n",
+ "33100:\tlearn: 0.9987349\ttest: 0.9976996\tbest: 0.9977101 (32300)\ttotal: 16m 55s\tremaining: 8m 38s\n",
+ "33200:\tlearn: 0.9987361\ttest: 0.9977066\tbest: 0.9977101 (32300)\ttotal: 16m 58s\tremaining: 8m 35s\n",
+ "33300:\tlearn: 0.9987365\ttest: 0.9977137\tbest: 0.9977137 (33300)\ttotal: 17m 3s\tremaining: 8m 33s\n",
+ "33400:\tlearn: 0.9987373\ttest: 0.9977101\tbest: 0.9977137 (33300)\ttotal: 17m 5s\tremaining: 8m 29s\n",
+ "33500:\tlearn: 0.9987400\ttest: 0.9977066\tbest: 0.9977137 (33300)\ttotal: 17m 8s\tremaining: 8m 26s\n",
+ "33600:\tlearn: 0.9987400\ttest: 0.9977066\tbest: 0.9977137 (33300)\ttotal: 17m 10s\tremaining: 8m 23s\n",
+ "33700:\tlearn: 0.9987420\ttest: 0.9977137\tbest: 0.9977137 (33300)\ttotal: 17m 14s\tremaining: 8m 20s\n",
+ "33800:\tlearn: 0.9987431\ttest: 0.9977207\tbest: 0.9977207 (33800)\ttotal: 17m 17s\tremaining: 8m 17s\n",
+ "33900:\tlearn: 0.9987451\ttest: 0.9977207\tbest: 0.9977207 (33800)\ttotal: 17m 20s\tremaining: 8m 14s\n",
+ "34000:\tlearn: 0.9987443\ttest: 0.9977243\tbest: 0.9977243 (34000)\ttotal: 17m 23s\tremaining: 8m 10s\n",
+ "34100:\tlearn: 0.9987467\ttest: 0.9977243\tbest: 0.9977243 (34000)\ttotal: 17m 25s\tremaining: 8m 7s\n",
+ "34200:\tlearn: 0.9987463\ttest: 0.9977243\tbest: 0.9977243 (34000)\ttotal: 17m 30s\tremaining: 8m 5s\n",
+ "34300:\tlearn: 0.9987490\ttest: 0.9977278\tbest: 0.9977278 (34300)\ttotal: 17m 32s\tremaining: 8m 1s\n",
+ "34400:\tlearn: 0.9987510\ttest: 0.9977243\tbest: 0.9977278 (34300)\ttotal: 17m 35s\tremaining: 7m 58s\n",
+ "34500:\tlearn: 0.9987526\ttest: 0.9977348\tbest: 0.9977348 (34500)\ttotal: 17m 37s\tremaining: 7m 55s\n",
+ "34600:\tlearn: 0.9987545\ttest: 0.9977348\tbest: 0.9977348 (34500)\ttotal: 17m 42s\tremaining: 7m 52s\n",
+ "34700:\tlearn: 0.9987557\ttest: 0.9977348\tbest: 0.9977348 (34500)\ttotal: 17m 45s\tremaining: 7m 49s\n",
+ "34800:\tlearn: 0.9987584\ttest: 0.9977313\tbest: 0.9977348 (34500)\ttotal: 17m 47s\tremaining: 7m 46s\n",
+ "34900:\tlearn: 0.9987573\ttest: 0.9977243\tbest: 0.9977348 (34500)\ttotal: 17m 50s\tremaining: 7m 42s\n",
+ "35000:\tlearn: 0.9987584\ttest: 0.9977278\tbest: 0.9977348 (34500)\ttotal: 17m 53s\tremaining: 7m 40s\n",
+ "35100:\tlearn: 0.9987584\ttest: 0.9977313\tbest: 0.9977348 (34500)\ttotal: 17m 57s\tremaining: 7m 37s\n",
+ "35200:\tlearn: 0.9987608\ttest: 0.9977313\tbest: 0.9977348 (34500)\ttotal: 17m 59s\tremaining: 7m 33s\n",
+ "35300:\tlearn: 0.9987639\ttest: 0.9977384\tbest: 0.9977384 (35300)\ttotal: 18m 2s\tremaining: 7m 30s\n",
+ "35400:\tlearn: 0.9987674\ttest: 0.9977348\tbest: 0.9977384 (35300)\ttotal: 18m 5s\tremaining: 7m 27s\n",
+ "35500:\tlearn: 0.9987706\ttest: 0.9977348\tbest: 0.9977384 (35300)\ttotal: 18m 9s\tremaining: 7m 24s\n",
+ "35600:\tlearn: 0.9987714\ttest: 0.9977313\tbest: 0.9977384 (35300)\ttotal: 18m 12s\tremaining: 7m 21s\n",
+ "35700:\tlearn: 0.9987729\ttest: 0.9977313\tbest: 0.9977384 (35300)\ttotal: 18m 14s\tremaining: 7m 18s\n",
+ "35800:\tlearn: 0.9987753\ttest: 0.9977243\tbest: 0.9977384 (35300)\ttotal: 18m 17s\tremaining: 7m 15s\n",
+ "35900:\tlearn: 0.9987741\ttest: 0.9977243\tbest: 0.9977384 (35300)\ttotal: 18m 21s\tremaining: 7m 12s\n",
+ "36000:\tlearn: 0.9987737\ttest: 0.9977313\tbest: 0.9977384 (35300)\ttotal: 18m 24s\tremaining: 7m 9s\n",
+ "36100:\tlearn: 0.9987784\ttest: 0.9977313\tbest: 0.9977384 (35300)\ttotal: 18m 26s\tremaining: 7m 6s\n",
+ "36200:\tlearn: 0.9987761\ttest: 0.9977243\tbest: 0.9977384 (35300)\ttotal: 18m 29s\tremaining: 7m 2s\n",
+ "36300:\tlearn: 0.9987808\ttest: 0.9977313\tbest: 0.9977384 (35300)\ttotal: 18m 32s\tremaining: 6m 59s\n",
+ "36400:\tlearn: 0.9987765\ttest: 0.9977348\tbest: 0.9977384 (35300)\ttotal: 18m 36s\tremaining: 6m 57s\n",
+ "36500:\tlearn: 0.9987780\ttest: 0.9977348\tbest: 0.9977384 (35300)\ttotal: 18m 39s\tremaining: 6m 53s\n",
+ "36600:\tlearn: 0.9987800\ttest: 0.9977348\tbest: 0.9977384 (35300)\ttotal: 18m 41s\tremaining: 6m 50s\n",
+ "36700:\tlearn: 0.9987812\ttest: 0.9977278\tbest: 0.9977384 (35300)\ttotal: 18m 44s\tremaining: 6m 47s\n",
+ "36800:\tlearn: 0.9987812\ttest: 0.9977348\tbest: 0.9977384 (35300)\ttotal: 18m 48s\tremaining: 6m 44s\n",
+ "36900:\tlearn: 0.9987835\ttest: 0.9977313\tbest: 0.9977384 (35300)\ttotal: 18m 51s\tremaining: 6m 41s\n",
+ "37000:\tlearn: 0.9987855\ttest: 0.9977384\tbest: 0.9977384 (35300)\ttotal: 18m 53s\tremaining: 6m 38s\n",
+ "37100:\tlearn: 0.9987878\ttest: 0.9977384\tbest: 0.9977384 (35300)\ttotal: 18m 56s\tremaining: 6m 35s\n",
+ "37200:\tlearn: 0.9987914\ttest: 0.9977419\tbest: 0.9977419 (37200)\ttotal: 19m\tremaining: 6m 32s\n",
+ "37300:\tlearn: 0.9987929\ttest: 0.9977384\tbest: 0.9977419 (37200)\ttotal: 19m 3s\tremaining: 6m 29s\n",
+ "37400:\tlearn: 0.9987937\ttest: 0.9977454\tbest: 0.9977454 (37400)\ttotal: 19m 6s\tremaining: 6m 26s\n",
+ "37500:\tlearn: 0.9987949\ttest: 0.9977454\tbest: 0.9977454 (37400)\ttotal: 19m 8s\tremaining: 6m 22s\n",
+ "37600:\tlearn: 0.9987965\ttest: 0.9977348\tbest: 0.9977454 (37400)\ttotal: 19m 11s\tremaining: 6m 19s\n",
+ "37700:\tlearn: 0.9987965\ttest: 0.9977419\tbest: 0.9977454 (37400)\ttotal: 19m 15s\tremaining: 6m 17s\n",
+ "37800:\tlearn: 0.9988008\ttest: 0.9977490\tbest: 0.9977490 (37800)\ttotal: 19m 18s\tremaining: 6m 13s\n",
+ "37900:\tlearn: 0.9988016\ttest: 0.9977454\tbest: 0.9977490 (37800)\ttotal: 19m 20s\tremaining: 6m 10s\n",
+ "38000:\tlearn: 0.9988023\ttest: 0.9977419\tbest: 0.9977490 (37800)\ttotal: 19m 23s\tremaining: 6m 7s\n",
+ "38100:\tlearn: 0.9988027\ttest: 0.9977490\tbest: 0.9977490 (37800)\ttotal: 19m 27s\tremaining: 6m 4s\n",
+ "38200:\tlearn: 0.9988035\ttest: 0.9977490\tbest: 0.9977490 (37800)\ttotal: 19m 30s\tremaining: 6m 1s\n",
+ "38300:\tlearn: 0.9988023\ttest: 0.9977490\tbest: 0.9977490 (37800)\ttotal: 19m 33s\tremaining: 5m 58s\n",
+ "38400:\tlearn: 0.9988043\ttest: 0.9977560\tbest: 0.9977560 (38400)\ttotal: 19m 35s\tremaining: 5m 55s\n",
+ "38500:\tlearn: 0.9988063\ttest: 0.9977560\tbest: 0.9977560 (38400)\ttotal: 19m 39s\tremaining: 5m 52s\n",
+ "38600:\tlearn: 0.9988094\ttest: 0.9977560\tbest: 0.9977560 (38400)\ttotal: 19m 42s\tremaining: 5m 49s\n",
+ "38700:\tlearn: 0.9988106\ttest: 0.9977631\tbest: 0.9977631 (38700)\ttotal: 19m 45s\tremaining: 5m 46s\n",
+ "38800:\tlearn: 0.9988125\ttest: 0.9977490\tbest: 0.9977631 (38700)\ttotal: 19m 47s\tremaining: 5m 42s\n",
+ "38900:\tlearn: 0.9988141\ttest: 0.9977560\tbest: 0.9977631 (38700)\ttotal: 19m 50s\tremaining: 5m 39s\n",
+ "39000:\tlearn: 0.9988165\ttest: 0.9977595\tbest: 0.9977631 (38700)\ttotal: 19m 54s\tremaining: 5m 36s\n",
+ "39100:\tlearn: 0.9988153\ttest: 0.9977560\tbest: 0.9977631 (38700)\ttotal: 19m 57s\tremaining: 5m 33s\n",
+ "39200:\tlearn: 0.9988168\ttest: 0.9977560\tbest: 0.9977631 (38700)\ttotal: 20m\tremaining: 5m 30s\n",
+ "39300:\tlearn: 0.9988184\ttest: 0.9977560\tbest: 0.9977631 (38700)\ttotal: 20m 2s\tremaining: 5m 27s\n",
+ "39400:\tlearn: 0.9988200\ttest: 0.9977595\tbest: 0.9977631 (38700)\ttotal: 20m 7s\tremaining: 5m 24s\n",
+ "39500:\tlearn: 0.9988223\ttest: 0.9977631\tbest: 0.9977631 (38700)\ttotal: 20m 9s\tremaining: 5m 21s\n",
+ "39600:\tlearn: 0.9988239\ttest: 0.9977595\tbest: 0.9977631 (38700)\ttotal: 20m 12s\tremaining: 5m 18s\n",
+ "39700:\tlearn: 0.9988243\ttest: 0.9977701\tbest: 0.9977701 (39700)\ttotal: 20m 14s\tremaining: 5m 15s\n",
+ "39800:\tlearn: 0.9988251\ttest: 0.9977737\tbest: 0.9977737 (39800)\ttotal: 20m 18s\tremaining: 5m 12s\n",
+ "39900:\tlearn: 0.9988247\ttest: 0.9977737\tbest: 0.9977737 (39800)\ttotal: 20m 21s\tremaining: 5m 9s\n",
+ "40000:\tlearn: 0.9988263\ttest: 0.9977737\tbest: 0.9977737 (39800)\ttotal: 20m 24s\tremaining: 5m 6s\n",
+ "40100:\tlearn: 0.9988290\ttest: 0.9977772\tbest: 0.9977772 (40100)\ttotal: 20m 27s\tremaining: 5m 2s\n",
+ "40200:\tlearn: 0.9988286\ttest: 0.9977842\tbest: 0.9977842 (40200)\ttotal: 20m 29s\tremaining: 4m 59s\n",
+ "40300:\tlearn: 0.9988286\ttest: 0.9977772\tbest: 0.9977842 (40200)\ttotal: 20m 34s\tremaining: 4m 57s\n",
+ "40400:\tlearn: 0.9988321\ttest: 0.9977701\tbest: 0.9977842 (40200)\ttotal: 20m 36s\tremaining: 4m 53s\n",
+ "40500:\tlearn: 0.9988333\ttest: 0.9977772\tbest: 0.9977842 (40200)\ttotal: 20m 39s\tremaining: 4m 50s\n",
+ "40600:\tlearn: 0.9988329\ttest: 0.9977701\tbest: 0.9977842 (40200)\ttotal: 20m 41s\tremaining: 4m 47s\n",
+ "40700:\tlearn: 0.9988329\ttest: 0.9977772\tbest: 0.9977842 (40200)\ttotal: 20m 46s\tremaining: 4m 44s\n",
+ "40800:\tlearn: 0.9988341\ttest: 0.9977737\tbest: 0.9977842 (40200)\ttotal: 20m 48s\tremaining: 4m 41s\n",
+ "40900:\tlearn: 0.9988357\ttest: 0.9977737\tbest: 0.9977842 (40200)\ttotal: 20m 51s\tremaining: 4m 38s\n",
+ "41000:\tlearn: 0.9988364\ttest: 0.9977737\tbest: 0.9977842 (40200)\ttotal: 20m 54s\tremaining: 4m 35s\n",
+ "41100:\tlearn: 0.9988368\ttest: 0.9977772\tbest: 0.9977842 (40200)\ttotal: 20m 56s\tremaining: 4m 32s\n",
+ "41200:\tlearn: 0.9988364\ttest: 0.9977772\tbest: 0.9977842 (40200)\ttotal: 21m 1s\tremaining: 4m 29s\n",
+ "41300:\tlearn: 0.9988380\ttest: 0.9977772\tbest: 0.9977842 (40200)\ttotal: 21m 3s\tremaining: 4m 26s\n",
+ "41400:\tlearn: 0.9988412\ttest: 0.9977701\tbest: 0.9977842 (40200)\ttotal: 21m 6s\tremaining: 4m 23s\n",
+ "41500:\tlearn: 0.9988412\ttest: 0.9977701\tbest: 0.9977842 (40200)\ttotal: 21m 8s\tremaining: 4m 19s\n",
+ "41600:\tlearn: 0.9988412\ttest: 0.9977772\tbest: 0.9977842 (40200)\ttotal: 21m 13s\tremaining: 4m 17s\n",
+ "41700:\tlearn: 0.9988443\ttest: 0.9977772\tbest: 0.9977842 (40200)\ttotal: 21m 15s\tremaining: 4m 13s\n",
+ "41800:\tlearn: 0.9988455\ttest: 0.9977807\tbest: 0.9977842 (40200)\ttotal: 21m 18s\tremaining: 4m 10s\n",
+ "41900:\tlearn: 0.9988470\ttest: 0.9977772\tbest: 0.9977842 (40200)\ttotal: 21m 21s\tremaining: 4m 7s\n",
+ "42000:\tlearn: 0.9988482\ttest: 0.9977842\tbest: 0.9977842 (40200)\ttotal: 21m 24s\tremaining: 4m 4s\n",
+ "42100:\tlearn: 0.9988482\ttest: 0.9977807\tbest: 0.9977842 (40200)\ttotal: 21m 28s\tremaining: 4m 1s\n",
+ "42200:\tlearn: 0.9988494\ttest: 0.9977807\tbest: 0.9977842 (40200)\ttotal: 21m 30s\tremaining: 3m 58s\n",
+ "42300:\tlearn: 0.9988506\ttest: 0.9977878\tbest: 0.9977878 (42300)\ttotal: 21m 33s\tremaining: 3m 55s\n",
+ "42400:\tlearn: 0.9988553\ttest: 0.9977878\tbest: 0.9977878 (42300)\ttotal: 21m 36s\tremaining: 3m 52s\n",
+ "42500:\tlearn: 0.9988553\ttest: 0.9977878\tbest: 0.9977878 (42300)\ttotal: 21m 40s\tremaining: 3m 49s\n",
+ "42600:\tlearn: 0.9988568\ttest: 0.9977984\tbest: 0.9977984 (42600)\ttotal: 21m 43s\tremaining: 3m 46s\n",
+ "42700:\tlearn: 0.9988564\ttest: 0.9977948\tbest: 0.9977984 (42600)\ttotal: 21m 45s\tremaining: 3m 43s\n",
+ "42800:\tlearn: 0.9988568\ttest: 0.9977878\tbest: 0.9977984 (42600)\ttotal: 21m 48s\tremaining: 3m 40s\n",
+ "42900:\tlearn: 0.9988600\ttest: 0.9977878\tbest: 0.9977984 (42600)\ttotal: 21m 52s\tremaining: 3m 37s\n",
+ "43000:\tlearn: 0.9988604\ttest: 0.9978019\tbest: 0.9978019 (43000)\ttotal: 21m 55s\tremaining: 3m 34s\n",
+ "43100:\tlearn: 0.9988600\ttest: 0.9977948\tbest: 0.9978019 (43000)\ttotal: 21m 57s\tremaining: 3m 30s\n",
+ "43200:\tlearn: 0.9988647\ttest: 0.9977948\tbest: 0.9978019 (43000)\ttotal: 22m\tremaining: 3m 27s\n",
+ "43300:\tlearn: 0.9988658\ttest: 0.9977948\tbest: 0.9978019 (43000)\ttotal: 22m 3s\tremaining: 3m 24s\n",
+ "43400:\tlearn: 0.9988651\ttest: 0.9977984\tbest: 0.9978019 (43000)\ttotal: 22m 7s\tremaining: 3m 21s\n",
+ "43500:\tlearn: 0.9988651\ttest: 0.9977948\tbest: 0.9978019 (43000)\ttotal: 22m 9s\tremaining: 3m 18s\n",
+ "43600:\tlearn: 0.9988686\ttest: 0.9977878\tbest: 0.9978019 (43000)\ttotal: 22m 12s\tremaining: 3m 15s\n",
+ "43700:\tlearn: 0.9988686\ttest: 0.9977878\tbest: 0.9978019 (43000)\ttotal: 22m 15s\tremaining: 3m 12s\n",
+ "43800:\tlearn: 0.9988702\ttest: 0.9977948\tbest: 0.9978019 (43000)\ttotal: 22m 19s\tremaining: 3m 9s\n",
+ "43900:\tlearn: 0.9988717\ttest: 0.9977948\tbest: 0.9978019 (43000)\ttotal: 22m 22s\tremaining: 3m 6s\n",
+ "44000:\tlearn: 0.9988709\ttest: 0.9977913\tbest: 0.9978019 (43000)\ttotal: 22m 24s\tremaining: 3m 3s\n",
+ "44100:\tlearn: 0.9988717\ttest: 0.9977984\tbest: 0.9978019 (43000)\ttotal: 22m 27s\tremaining: 3m\n",
+ "44200:\tlearn: 0.9988733\ttest: 0.9978019\tbest: 0.9978019 (43000)\ttotal: 22m 31s\tremaining: 2m 57s\n",
+ "44300:\tlearn: 0.9988753\ttest: 0.9977984\tbest: 0.9978019 (43000)\ttotal: 22m 34s\tremaining: 2m 54s\n",
+ "44400:\tlearn: 0.9988753\ttest: 0.9978019\tbest: 0.9978019 (43000)\ttotal: 22m 37s\tremaining: 2m 51s\n",
+ "44500:\tlearn: 0.9988768\ttest: 0.9978019\tbest: 0.9978019 (43000)\ttotal: 22m 39s\tremaining: 2m 48s\n",
+ "44600:\tlearn: 0.9988753\ttest: 0.9978054\tbest: 0.9978054 (44600)\ttotal: 22m 42s\tremaining: 2m 44s\n",
+ "44700:\tlearn: 0.9988776\ttest: 0.9978054\tbest: 0.9978054 (44600)\ttotal: 22m 46s\tremaining: 2m 42s\n",
+ "44800:\tlearn: 0.9988807\ttest: 0.9978054\tbest: 0.9978054 (44600)\ttotal: 22m 49s\tremaining: 2m 38s\n",
+ "44900:\tlearn: 0.9988788\ttest: 0.9978089\tbest: 0.9978089 (44900)\ttotal: 22m 51s\tremaining: 2m 35s\n",
+ "45000:\tlearn: 0.9988815\ttest: 0.9978019\tbest: 0.9978089 (44900)\ttotal: 22m 54s\tremaining: 2m 32s\n",
+ "45100:\tlearn: 0.9988807\ttest: 0.9977984\tbest: 0.9978089 (44900)\ttotal: 22m 58s\tremaining: 2m 29s\n",
+ "45200:\tlearn: 0.9988811\ttest: 0.9977984\tbest: 0.9978089 (44900)\ttotal: 23m 1s\tremaining: 2m 26s\n",
+ "45300:\tlearn: 0.9988815\ttest: 0.9978019\tbest: 0.9978089 (44900)\ttotal: 23m 3s\tremaining: 2m 23s\n",
+ "45400:\tlearn: 0.9988823\ttest: 0.9978054\tbest: 0.9978089 (44900)\ttotal: 23m 6s\tremaining: 2m 20s\n",
+ "45500:\tlearn: 0.9988823\ttest: 0.9978089\tbest: 0.9978089 (44900)\ttotal: 23m 9s\tremaining: 2m 17s\n",
+ "45600:\tlearn: 0.9988823\ttest: 0.9978125\tbest: 0.9978125 (45600)\ttotal: 23m 13s\tremaining: 2m 14s\n",
+ "45700:\tlearn: 0.9988862\ttest: 0.9978089\tbest: 0.9978125 (45600)\ttotal: 23m 16s\tremaining: 2m 11s\n",
+ "45800:\tlearn: 0.9988847\ttest: 0.9978089\tbest: 0.9978125 (45600)\ttotal: 23m 18s\tremaining: 2m 8s\n",
+ "45900:\tlearn: 0.9988870\ttest: 0.9978089\tbest: 0.9978125 (45600)\ttotal: 23m 21s\tremaining: 2m 5s\n",
+ "46000:\tlearn: 0.9988882\ttest: 0.9978089\tbest: 0.9978125 (45600)\ttotal: 23m 25s\tremaining: 2m 2s\n",
+ "46100:\tlearn: 0.9988902\ttest: 0.9978089\tbest: 0.9978125 (45600)\ttotal: 23m 28s\tremaining: 1m 59s\n",
+ "46200:\tlearn: 0.9988905\ttest: 0.9978089\tbest: 0.9978125 (45600)\ttotal: 23m 30s\tremaining: 1m 56s\n",
+ "46300:\tlearn: 0.9988909\ttest: 0.9978125\tbest: 0.9978125 (45600)\ttotal: 23m 33s\tremaining: 1m 52s\n",
+ "46400:\tlearn: 0.9988905\ttest: 0.9978089\tbest: 0.9978125 (45600)\ttotal: 23m 37s\tremaining: 1m 49s\n",
+ "46500:\tlearn: 0.9988925\ttest: 0.9978125\tbest: 0.9978125 (45600)\ttotal: 23m 40s\tremaining: 1m 46s\n",
+ "46600:\tlearn: 0.9988941\ttest: 0.9978160\tbest: 0.9978160 (46600)\ttotal: 23m 43s\tremaining: 1m 43s\n",
+ "46700:\tlearn: 0.9988949\ttest: 0.9978160\tbest: 0.9978160 (46600)\ttotal: 23m 45s\tremaining: 1m 40s\n",
+ "46800:\tlearn: 0.9988988\ttest: 0.9978195\tbest: 0.9978195 (46800)\ttotal: 23m 48s\tremaining: 1m 37s\n",
+ "46900:\tlearn: 0.9989000\ttest: 0.9978160\tbest: 0.9978195 (46800)\ttotal: 23m 52s\tremaining: 1m 34s\n",
+ "47000:\tlearn: 0.9989011\ttest: 0.9978160\tbest: 0.9978195 (46800)\ttotal: 23m 55s\tremaining: 1m 31s\n",
+ "47100:\tlearn: 0.9989007\ttest: 0.9978089\tbest: 0.9978195 (46800)\ttotal: 23m 58s\tremaining: 1m 28s\n",
+ "47200:\tlearn: 0.9989019\ttest: 0.9978160\tbest: 0.9978195 (46800)\ttotal: 24m\tremaining: 1m 25s\n",
+ "47300:\tlearn: 0.9989051\ttest: 0.9978160\tbest: 0.9978195 (46800)\ttotal: 24m 4s\tremaining: 1m 22s\n",
+ "47400:\tlearn: 0.9989051\ttest: 0.9978195\tbest: 0.9978195 (46800)\ttotal: 24m 7s\tremaining: 1m 19s\n",
+ "47500:\tlearn: 0.9989074\ttest: 0.9978195\tbest: 0.9978195 (46800)\ttotal: 24m 10s\tremaining: 1m 16s\n",
+ "47600:\tlearn: 0.9989066\ttest: 0.9978089\tbest: 0.9978195 (46800)\ttotal: 24m 12s\tremaining: 1m 13s\n",
+ "47700:\tlearn: 0.9989074\ttest: 0.9978195\tbest: 0.9978195 (46800)\ttotal: 24m 16s\tremaining: 1m 10s\n",
+ "47800:\tlearn: 0.9989086\ttest: 0.9978125\tbest: 0.9978195 (46800)\ttotal: 24m 19s\tremaining: 1m 7s\n",
+ "47900:\tlearn: 0.9989086\ttest: 0.9978266\tbest: 0.9978266 (47900)\ttotal: 24m 22s\tremaining: 1m 4s\n",
+ "48000:\tlearn: 0.9989098\ttest: 0.9978266\tbest: 0.9978266 (47900)\ttotal: 24m 24s\tremaining: 1m\n",
+ "48100:\tlearn: 0.9989117\ttest: 0.9978301\tbest: 0.9978301 (48100)\ttotal: 24m 27s\tremaining: 57.9s\n",
+ "48200:\tlearn: 0.9989129\ttest: 0.9978301\tbest: 0.9978301 (48100)\ttotal: 24m 31s\tremaining: 54.9s\n",
+ "48300:\tlearn: 0.9989152\ttest: 0.9978336\tbest: 0.9978336 (48300)\ttotal: 24m 34s\tremaining: 51.9s\n",
+ "48400:\tlearn: 0.9989152\ttest: 0.9978301\tbest: 0.9978336 (48300)\ttotal: 24m 36s\tremaining: 48.8s\n",
+ "48500:\tlearn: 0.9989149\ttest: 0.9978301\tbest: 0.9978336 (48300)\ttotal: 24m 39s\tremaining: 45.7s\n",
+ "48600:\tlearn: 0.9989172\ttest: 0.9978230\tbest: 0.9978336 (48300)\ttotal: 24m 43s\tremaining: 42.7s\n",
+ "48700:\tlearn: 0.9989180\ttest: 0.9978301\tbest: 0.9978336 (48300)\ttotal: 24m 46s\tremaining: 39.6s\n",
+ "48800:\tlearn: 0.9989184\ttest: 0.9978301\tbest: 0.9978336 (48300)\ttotal: 24m 48s\tremaining: 36.6s\n",
+ "48900:\tlearn: 0.9989188\ttest: 0.9978230\tbest: 0.9978336 (48300)\ttotal: 24m 51s\tremaining: 33.5s\n",
+ "49000:\tlearn: 0.9989192\ttest: 0.9978230\tbest: 0.9978336 (48300)\ttotal: 24m 54s\tremaining: 30.5s\n",
+ "49100:\tlearn: 0.9989196\ttest: 0.9978266\tbest: 0.9978336 (48300)\ttotal: 24m 58s\tremaining: 27.4s\n",
+ "49200:\tlearn: 0.9989211\ttest: 0.9978230\tbest: 0.9978336 (48300)\ttotal: 25m\tremaining: 24.4s\n",
+ "49300:\tlearn: 0.9989219\ttest: 0.9978266\tbest: 0.9978336 (48300)\ttotal: 25m 3s\tremaining: 21.3s\n",
+ "49400:\tlearn: 0.9989227\ttest: 0.9978301\tbest: 0.9978336 (48300)\ttotal: 25m 5s\tremaining: 18.3s\n",
+ "49500:\tlearn: 0.9989247\ttest: 0.9978336\tbest: 0.9978336 (48300)\ttotal: 25m 10s\tremaining: 15.2s\n",
+ "49600:\tlearn: 0.9989247\ttest: 0.9978372\tbest: 0.9978372 (49600)\ttotal: 25m 12s\tremaining: 12.2s\n",
+ "49700:\tlearn: 0.9989254\ttest: 0.9978372\tbest: 0.9978372 (49600)\ttotal: 25m 15s\tremaining: 9.12s\n",
+ "49800:\tlearn: 0.9989278\ttest: 0.9978372\tbest: 0.9978372 (49600)\ttotal: 25m 18s\tremaining: 6.07s\n",
+ "49900:\tlearn: 0.9989290\ttest: 0.9978372\tbest: 0.9978372 (49600)\ttotal: 25m 21s\tremaining: 3.02s\n",
+ "49999:\tlearn: 0.9989290\ttest: 0.9978372\tbest: 0.9978372 (49600)\ttotal: 25m 25s\tremaining: 0us\n",
+ "bestTest = 0.9978371627\n",
+ "bestIteration = 49600\n",
+ "Shrink model to first 49601 iterations.\n"
+ ]
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "execution_count": 33
+ }
+ ],
+ "source": [
+ "model = CatBoostClassifier(iterations = 50000,\n",
+ " random_state = 69,\n",
+ " loss_function = \"MultiClass\",\n",
+ " eval_metric= 'Accuracy',\n",
+ " cat_features = cat_cols,\n",
+ " metric_period=100,\n",
+ " task_type = 'GPU'\n",
+ " )\n",
+ "\n",
+ "model.fit(X_train, y_train, plot=True, eval_set = (X_test, y_test))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "model.get_feature_importance(prettified=True)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 519
+ },
+ "id": "jy8HlsPfl1U3",
+ "outputId": "c088c271-00d8-4206-c489-534726171752"
+ },
+ "execution_count": 34,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Feature Id Importances\n",
+ "0 Электросистема. Напряжение 24.613057\n",
+ "1 ДВС. Температура охлаждающей жидкости 11.264609\n",
+ "2 КПП. Температура масла 9.729970\n",
+ "3 Полож.пед.акселер.,% 9.218025\n",
+ "4 КПП. Давление масла в системе смазки 9.029200\n",
+ "5 Значение счетчика моточасов, час:мин 8.972413\n",
+ "6 Давление в пневмостистеме (spn46), кПа 7.963685\n",
+ "7 ДВС. Частота вращения коленчатого вала 5.222944\n",
+ "8 ДВС. Давление смазки 4.144133\n",
+ "9 Скорость 3.523335\n",
+ "10 Обор.двиг.,об/мин 3.405608\n",
+ "11 Давл.масла двиг.,кПа 2.508649\n",
+ "12 Темп.масла двиг.,°С 0.336934\n",
+ "13 Уровень топлива % (spn96) 0.067439\n",
+ "14 Сост.пед.сцепл. 0.000000"
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Feature Id | \n",
+ " Importances | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " Электросистема. Напряжение | \n",
+ " 24.613057 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " ДВС. Температура охлаждающей жидкости | \n",
+ " 11.264609 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " КПП. Температура масла | \n",
+ " 9.729970 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " Полож.пед.акселер.,% | \n",
+ " 9.218025 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " КПП. Давление масла в системе смазки | \n",
+ " 9.029200 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " Значение счетчика моточасов, час:мин | \n",
+ " 8.972413 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " Давление в пневмостистеме (spn46), кПа | \n",
+ " 7.963685 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " ДВС. Частота вращения коленчатого вала | \n",
+ " 5.222944 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " ДВС. Давление смазки | \n",
+ " 4.144133 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " Скорость | \n",
+ " 3.523335 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " Обор.двиг.,об/мин | \n",
+ " 3.405608 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " Давл.масла двиг.,кПа | \n",
+ " 2.508649 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " Темп.масла двиг.,°С | \n",
+ " 0.336934 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " Уровень топлива % (spn96) | \n",
+ " 0.067439 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " Сост.пед.сцепл. | \n",
+ " 0.000000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "summary": "{\n \"name\": \"model\",\n \"rows\": 15,\n \"fields\": [\n {\n \"column\": \"Feature Id\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 15,\n \"samples\": [\n \"\\u0421\\u043a\\u043e\\u0440\\u043e\\u0441\\u0442\\u044c\",\n \"\\u0414\\u0430\\u0432\\u043b.\\u043c\\u0430\\u0441\\u043b\\u0430 \\u0434\\u0432\\u0438\\u0433.,\\u043a\\u041f\\u0430\",\n \"\\u042d\\u043b\\u0435\\u043a\\u0442\\u0440\\u043e\\u0441\\u0438\\u0441\\u0442\\u0435\\u043c\\u0430. \\u041d\\u0430\\u043f\\u0440\\u044f\\u0436\\u0435\\u043d\\u0438\\u0435\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Importances\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 6.244992095991776,\n \"min\": 0.0,\n \"max\": 24.613056972318837,\n \"num_unique_values\": 15,\n \"samples\": [\n 3.523334606678383,\n 2.508648510708203,\n 24.613056972318837\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 34
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "model.save_model('model.cbm', format=\"cbm\")"
+ ],
+ "metadata": {
+ "id": "2ufSFpjLmdkM"
+ },
+ "execution_count": 35,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "X_test['result'] = model.predict(X_test)"
+ ],
+ "metadata": {
+ "id": "q6zORyscmj-w"
+ },
+ "execution_count": 36,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "X_test['result_true'] = y_test"
+ ],
+ "metadata": {
+ "id": "aCXzyqb7ncrD"
+ },
+ "execution_count": 37,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "X_test"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 513
+ },
+ "id": "gr-2fbRtns-j",
+ "outputId": "b717482e-c571-4a30-b452-4a4b051a1f82"
+ },
+ "execution_count": 38,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Полож.пед.акселер.,% Давл.масла двиг.,кПа Темп.масла двиг.,°С \\\n",
+ "1366103 0.0 260.0 NaN \n",
+ "120095 0.0 328.0 NaN \n",
+ "74306 94.8 508.0 NaN \n",
+ "1277480 94.8 460.0 NaN \n",
+ "1796794 94.8 500.0 NaN \n",
+ "... ... ... ... \n",
+ "1854601 56.4 412.0 NaN \n",
+ "1054544 0.0 240.0 NaN \n",
+ "299541 0.0 188.0 NaN \n",
+ "252207 0.0 240.0 NaN \n",
+ "1741218 0.0 140.0 NaN \n",
+ "\n",
+ " Обор.двиг.,об/мин Значение счетчика моточасов, час:мин \\\n",
+ "1366103 955.375 NaN \n",
+ "120095 1385.000 16618.0 \n",
+ "74306 1914.750 53730.0 \n",
+ "1277480 1924.125 NaN \n",
+ "1796794 1903.875 287954.0 \n",
+ "... ... ... \n",
+ "1854601 1437.750 295936.0 \n",
+ "1054544 970.750 NaN \n",
+ "299541 701.125 338000.0 \n",
+ "252207 647.500 NaN \n",
+ "1741218 651.625 334600.0 \n",
+ "\n",
+ " Сост.пед.сцепл. КПП. Температура масла \\\n",
+ "1366103 1.0 NaN \n",
+ "120095 1.0 NaN \n",
+ "74306 1.0 NaN \n",
+ "1277480 1.0 NaN \n",
+ "1796794 1.0 NaN \n",
+ "... ... ... \n",
+ "1854601 1.0 NaN \n",
+ "1054544 1.0 NaN \n",
+ "299541 1.0 NaN \n",
+ "252207 1.0 NaN \n",
+ "1741218 1.0 NaN \n",
+ "\n",
+ " КПП. Давление масла в системе смазки Скорость ДВС. Давление смазки \\\n",
+ "1366103 1248.0 0.0 260.0 \n",
+ "120095 1216.0 0.0 328.0 \n",
+ "74306 1200.0 0.0 508.0 \n",
+ "1277480 1280.0 10.5 460.0 \n",
+ "1796794 1248.0 0.0 500.0 \n",
+ "... ... ... ... \n",
+ "1854601 1216.0 0.0 412.0 \n",
+ "1054544 1248.0 0.0 240.0 \n",
+ "299541 1200.0 0.0 188.0 \n",
+ "252207 1200.0 NaN 240.0 \n",
+ "1741218 1216.0 0.0 140.0 \n",
+ "\n",
+ " ДВС. Температура охлаждающей жидкости \\\n",
+ "1366103 72.0 \n",
+ "120095 84.0 \n",
+ "74306 81.0 \n",
+ "1277480 75.0 \n",
+ "1796794 77.0 \n",
+ "... ... \n",
+ "1854601 76.0 \n",
+ "1054544 72.0 \n",
+ "299541 64.0 \n",
+ "252207 57.0 \n",
+ "1741218 73.0 \n",
+ "\n",
+ " Давление в пневмостистеме (spn46), кПа Уровень топлива % (spn96) \\\n",
+ "1366103 768.0 NaN \n",
+ "120095 824.0 NaN \n",
+ "74306 808.0 NaN \n",
+ "1277480 760.0 NaN \n",
+ "1796794 696.0 NaN \n",
+ "... ... ... \n",
+ "1854601 720.0 NaN \n",
+ "1054544 600.0 NaN \n",
+ "299541 784.0 NaN \n",
+ "252207 776.0 NaN \n",
+ "1741218 696.0 NaN \n",
+ "\n",
+ " Электросистема. Напряжение ДВС. Частота вращения коленчатого вала \\\n",
+ "1366103 28.20 955.375 \n",
+ "120095 27.80 1385.000 \n",
+ "74306 NaN 1914.750 \n",
+ "1277480 NaN 1924.125 \n",
+ "1796794 27.95 1903.875 \n",
+ "... ... ... \n",
+ "1854601 28.00 1437.750 \n",
+ "1054544 28.00 970.750 \n",
+ "299541 28.10 701.125 \n",
+ "252207 NaN 647.500 \n",
+ "1741218 28.05 651.625 \n",
+ "\n",
+ " result result_true \n",
+ "1366103 2 2 \n",
+ "120095 1 1 \n",
+ "74306 1 1 \n",
+ "1277480 2 2 \n",
+ "1796794 2 2 \n",
+ "... ... ... \n",
+ "1854601 2 2 \n",
+ "1054544 2 2 \n",
+ "299541 1 1 \n",
+ "252207 1 1 \n",
+ "1741218 2 2 \n",
+ "\n",
+ "[283424 rows x 17 columns]"
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Полож.пед.акселер.,% | \n",
+ " Давл.масла двиг.,кПа | \n",
+ " Темп.масла двиг.,°С | \n",
+ " Обор.двиг.,об/мин | \n",
+ " Значение счетчика моточасов, час:мин | \n",
+ " Сост.пед.сцепл. | \n",
+ " КПП. Температура масла | \n",
+ " КПП. Давление масла в системе смазки | \n",
+ " Скорость | \n",
+ " ДВС. Давление смазки | \n",
+ " ДВС. Температура охлаждающей жидкости | \n",
+ " Давление в пневмостистеме (spn46), кПа | \n",
+ " Уровень топлива % (spn96) | \n",
+ " Электросистема. Напряжение | \n",
+ " ДВС. Частота вращения коленчатого вала | \n",
+ " result | \n",
+ " result_true | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1366103 | \n",
+ " 0.0 | \n",
+ " 260.0 | \n",
+ " NaN | \n",
+ " 955.375 | \n",
+ " NaN | \n",
+ " 1.0 | \n",
+ " NaN | \n",
+ " 1248.0 | \n",
+ " 0.0 | \n",
+ " 260.0 | \n",
+ " 72.0 | \n",
+ " 768.0 | \n",
+ " NaN | \n",
+ " 28.20 | \n",
+ " 955.375 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 120095 | \n",
+ " 0.0 | \n",
+ " 328.0 | \n",
+ " NaN | \n",
+ " 1385.000 | \n",
+ " 16618.0 | \n",
+ " 1.0 | \n",
+ " NaN | \n",
+ " 1216.0 | \n",
+ " 0.0 | \n",
+ " 328.0 | \n",
+ " 84.0 | \n",
+ " 824.0 | \n",
+ " NaN | \n",
+ " 27.80 | \n",
+ " 1385.000 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 74306 | \n",
+ " 94.8 | \n",
+ " 508.0 | \n",
+ " NaN | \n",
+ " 1914.750 | \n",
+ " 53730.0 | \n",
+ " 1.0 | \n",
+ " NaN | \n",
+ " 1200.0 | \n",
+ " 0.0 | \n",
+ " 508.0 | \n",
+ " 81.0 | \n",
+ " 808.0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 1914.750 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 1277480 | \n",
+ " 94.8 | \n",
+ " 460.0 | \n",
+ " NaN | \n",
+ " 1924.125 | \n",
+ " NaN | \n",
+ " 1.0 | \n",
+ " NaN | \n",
+ " 1280.0 | \n",
+ " 10.5 | \n",
+ " 460.0 | \n",
+ " 75.0 | \n",
+ " 760.0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 1924.125 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 1796794 | \n",
+ " 94.8 | \n",
+ " 500.0 | \n",
+ " NaN | \n",
+ " 1903.875 | \n",
+ " 287954.0 | \n",
+ " 1.0 | \n",
+ " NaN | \n",
+ " 1248.0 | \n",
+ " 0.0 | \n",
+ " 500.0 | \n",
+ " 77.0 | \n",
+ " 696.0 | \n",
+ " NaN | \n",
+ " 27.95 | \n",
+ " 1903.875 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 1854601 | \n",
+ " 56.4 | \n",
+ " 412.0 | \n",
+ " NaN | \n",
+ " 1437.750 | \n",
+ " 295936.0 | \n",
+ " 1.0 | \n",
+ " NaN | \n",
+ " 1216.0 | \n",
+ " 0.0 | \n",
+ " 412.0 | \n",
+ " 76.0 | \n",
+ " 720.0 | \n",
+ " NaN | \n",
+ " 28.00 | \n",
+ " 1437.750 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 1054544 | \n",
+ " 0.0 | \n",
+ " 240.0 | \n",
+ " NaN | \n",
+ " 970.750 | \n",
+ " NaN | \n",
+ " 1.0 | \n",
+ " NaN | \n",
+ " 1248.0 | \n",
+ " 0.0 | \n",
+ " 240.0 | \n",
+ " 72.0 | \n",
+ " 600.0 | \n",
+ " NaN | \n",
+ " 28.00 | \n",
+ " 970.750 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 299541 | \n",
+ " 0.0 | \n",
+ " 188.0 | \n",
+ " NaN | \n",
+ " 701.125 | \n",
+ " 338000.0 | \n",
+ " 1.0 | \n",
+ " NaN | \n",
+ " 1200.0 | \n",
+ " 0.0 | \n",
+ " 188.0 | \n",
+ " 64.0 | \n",
+ " 784.0 | \n",
+ " NaN | \n",
+ " 28.10 | \n",
+ " 701.125 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 252207 | \n",
+ " 0.0 | \n",
+ " 240.0 | \n",
+ " NaN | \n",
+ " 647.500 | \n",
+ " NaN | \n",
+ " 1.0 | \n",
+ " NaN | \n",
+ " 1200.0 | \n",
+ " NaN | \n",
+ " 240.0 | \n",
+ " 57.0 | \n",
+ " 776.0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 647.500 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 1741218 | \n",
+ " 0.0 | \n",
+ " 140.0 | \n",
+ " NaN | \n",
+ " 651.625 | \n",
+ " 334600.0 | \n",
+ " 1.0 | \n",
+ " NaN | \n",
+ " 1216.0 | \n",
+ " 0.0 | \n",
+ " 140.0 | \n",
+ " 73.0 | \n",
+ " 696.0 | \n",
+ " NaN | \n",
+ " 28.05 | \n",
+ " 651.625 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
283424 rows × 17 columns
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "X_test"
+ }
+ },
+ "metadata": {},
+ "execution_count": 38
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [],
+ "metadata": {
+ "id": "m7Kc02YLokA4"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Новый раздел"
+ ],
+ "metadata": {
+ "id": "Sz6IeJShp9Fl"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "jam1MmPvYL05"
+ },
+ "outputs": [],
+ "source": [
+ "# save data\n",
+ "# combinet.to_csv(\"EDA/dataset.csv\", index=False)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.11"
+ },
+ "colab": {
+ "provenance": [],
+ "gpuType": "T4"
+ },
+ "accelerator": "GPU",
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "aa393e98c6ef47b58dc10a5b91aab35d": {
+ "model_module": "catboost-widget",
+ "model_name": "CatboostWidgetModel",
+ "model_module_version": "^1.0.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "catboost-widget",
+ "_model_module_version": "^1.0.0",
+ "_model_name": "CatboostWidgetModel",
+ "_view_count": null,
+ "_view_module": "catboost-widget",
+ "_view_module_version": "^1.0.0",
+ "_view_name": "CatboostWidgetView",
+ "data": {
+ "catboost_info": {
+ "path": "catboost_info",
+ "name": "catboost_info",
+ "content": {
+ "passed_iterations": 49999,
+ "total_iterations": 50000,
+ "data": {
+ "iterations": [
+ {
+ "learn": [
+ 0.9448978304,
+ 1.027030269
+ ],
+ "iteration": 0,
+ "passed_time": 0.0491230807,
+ "remaining_time": 2456.104912,
+ "test": [
+ 0.944888224,
+ 1.027029071
+ ]
+ },
+ {
+ "learn": [
+ 0.9762028252,
+ 0.0887520964
+ ],
+ "iteration": 100,
+ "passed_time": 4.683602736,
+ "remaining_time": 2313.931613,
+ "test": [
+ 0.9760676583,
+ 0.08906415802
+ ]
+ },
+ {
+ "learn": [
+ 0.9844888304,
+ 0.05350585496
+ ],
+ "iteration": 200,
+ "passed_time": 7.402095886,
+ "remaining_time": 1833.915289,
+ "test": [
+ 0.9842779722,
+ 0.05396667598
+ ]
+ },
+ {
+ "learn": [
+ 0.9881837395,
+ 0.04017625292
+ ],
+ "iteration": 300,
+ "passed_time": 10.11904926,
+ "remaining_time": 1670.786144,
+ "test": [
+ 0.987943858,
+ 0.04067411204
+ ]
+ },
+ {
+ "learn": [
+ 0.9898106756,
+ 0.03284420443
+ ],
+ "iteration": 400,
+ "passed_time": 12.83873713,
+ "remaining_time": 1588.001304,
+ "test": [
+ 0.989591566,
+ 0.03338415622
+ ]
+ },
+ {
+ "learn": [
+ 0.9909452185,
+ 0.02835116249
+ ],
+ "iteration": 500,
+ "passed_time": 16.50815568,
+ "remaining_time": 1631.012372,
+ "test": [
+ 0.9908546912,
+ 0.02891415969
+ ]
+ },
+ {
+ "learn": [
+ 0.9919582313,
+ 0.02508311738
+ ],
+ "iteration": 600,
+ "passed_time": 20.01046373,
+ "remaining_time": 1644.753574,
+ "test": [
+ 0.9919096477,
+ 0.02563670205
+ ]
+ },
+ {
+ "learn": [
+ 0.9926572257,
+ 0.0227925448
+ ],
+ "iteration": 700,
+ "passed_time": 22.7050337,
+ "remaining_time": 1596.769553,
+ "test": [
+ 0.9926011911,
+ 0.02336707217
+ ]
+ },
+ {
+ "learn": [
+ 0.9933017276,
+ 0.02096851574
+ ],
+ "iteration": 800,
+ "passed_time": 25.47349552,
+ "remaining_time": 1564.632342,
+ "test": [
+ 0.9933139043,
+ 0.02156474508
+ ]
+ },
+ {
+ "learn": [
+ 0.9937451167,
+ 0.01955079957
+ ],
+ "iteration": 900,
+ "passed_time": 28.64290955,
+ "remaining_time": 1560.863725,
+ "test": [
+ 0.9936561477,
+ 0.02016928342
+ ]
+ },
+ {
+ "learn": [
+ 0.9941591034,
+ 0.01836990338
+ ],
+ "iteration": 1000,
+ "passed_time": 32.69772621,
+ "remaining_time": 1600.555331,
+ "test": [
+ 0.9940901265,
+ 0.01901757648
+ ]
+ },
+ {
+ "learn": [
+ 0.9944735137,
+ 0.01733765193
+ ],
+ "iteration": 1100,
+ "passed_time": 35.4344517,
+ "remaining_time": 1573.75954,
+ "test": [
+ 0.9943829739,
+ 0.01800289027
+ ]
+ },
+ {
+ "learn": [
+ 0.9947479366,
+ 0.01655697834
+ ],
+ "iteration": 1200,
+ "passed_time": 38.1432076,
+ "remaining_time": 1549.833795,
+ "test": [
+ 0.9945523315,
+ 0.01724779298
+ ]
+ },
+ {
+ "learn": [
+ 0.9950192233,
+ 0.01580121415
+ ],
+ "iteration": 1300,
+ "passed_time": 40.89884779,
+ "remaining_time": 1530.924665,
+ "test": [
+ 0.9947851981,
+ 0.01653738841
+ ]
+ },
+ {
+ "learn": [
+ 0.9952266087,
+ 0.01518926167
+ ],
+ "iteration": 1400,
+ "passed_time": 45.39673216,
+ "remaining_time": 1574.757877,
+ "test": [
+ 0.9950039517,
+ 0.01596044355
+ ]
+ },
+ {
+ "learn": [
+ 0.9954171366,
+ 0.01461310516
+ ],
+ "iteration": 1500,
+ "passed_time": 48.15516286,
+ "remaining_time": 1555.947531,
+ "test": [
+ 0.9951486113,
+ 0.01541179904
+ ]
+ },
+ {
+ "learn": [
+ 0.9956060964,
+ 0.01407089471
+ ],
+ "iteration": 1600,
+ "passed_time": 50.9174545,
+ "remaining_time": 1539.259138,
+ "test": [
+ 0.995307384,
+ 0.01488854334
+ ]
+ },
+ {
+ "learn": [
+ 0.9957868235,
+ 0.01357687366
+ ],
+ "iteration": 1700,
+ "passed_time": 53.64121577,
+ "remaining_time": 1523.114098,
+ "test": [
+ 0.9954308739,
+ 0.01441905089
+ ]
+ },
+ {
+ "learn": [
+ 0.9959338358,
+ 0.01317254084
+ ],
+ "iteration": 1800,
+ "passed_time": 58.12408934,
+ "remaining_time": 1555.537469,
+ "test": [
+ 0.9956143446,
+ 0.01404400029
+ ]
+ },
+ {
+ "learn": [
+ 0.9960459572,
+ 0.01283297918
+ ],
+ "iteration": 1900,
+ "passed_time": 60.81698809,
+ "remaining_time": 1538.788169,
+ "test": [
+ 0.9957519476,
+ 0.01372475617
+ ]
+ },
+ {
+ "learn": [
+ 0.9961443575,
+ 0.01253163689
+ ],
+ "iteration": 2000,
+ "passed_time": 63.55971014,
+ "remaining_time": 1524.638944,
+ "test": [
+ 0.9957907587,
+ 0.01344921331
+ ]
+ },
+ {
+ "learn": [
+ 0.9962353091,
+ 0.01223224482
+ ],
+ "iteration": 2100,
+ "passed_time": 66.2771035,
+ "remaining_time": 1510.998087,
+ "test": [
+ 0.9958542678,
+ 0.01317012667
+ ]
+ },
+ {
+ "learn": [
+ 0.9963329252,
+ 0.01192914298
+ ],
+ "iteration": 2200,
+ "passed_time": 70.81624879,
+ "remaining_time": 1537.91271,
+ "test": [
+ 0.9959354183,
+ 0.01288226238
+ ]
+ },
+ {
+ "learn": [
+ 0.9964164282,
+ 0.01166976504
+ ],
+ "iteration": 2300,
+ "passed_time": 73.50937721,
+ "remaining_time": 1523.826069,
+ "test": [
+ 0.9960095123,
+ 0.0126417112
+ ]
+ },
+ {
+ "learn": [
+ 0.9965007153,
+ 0.0114363723
+ ],
+ "iteration": 2400,
+ "passed_time": 76.25869302,
+ "remaining_time": 1511.802386,
+ "test": [
+ 0.9960800779,
+ 0.01242814587
+ ]
+ },
+ {
+ "learn": [
+ 0.9965548158,
+ 0.01122767686
+ ],
+ "iteration": 2500,
+ "passed_time": 79.01986509,
+ "remaining_time": 1500.745531,
+ "test": [
+ 0.9961400587,
+ 0.0122325734
+ ]
+ },
+ {
+ "learn": [
+ 0.9966312622,
+ 0.01101886579
+ ],
+ "iteration": 2600,
+ "passed_time": 83.08654977,
+ "remaining_time": 1514.117406,
+ "test": [
+ 0.9962070961,
+ 0.01203894769
+ ]
+ },
+ {
+ "learn": [
+ 0.9966759539,
+ 0.01086726472
+ ],
+ "iteration": 2700,
+ "passed_time": 86.25906444,
+ "remaining_time": 1510.539611,
+ "test": [
+ 0.9962494355,
+ 0.01190165304
+ ]
+ },
+ {
+ "learn": [
+ 0.9967277023,
+ 0.01070254663
+ ],
+ "iteration": 2800,
+ "passed_time": 89.01244027,
+ "remaining_time": 1499.927943,
+ "test": [
+ 0.9963164728,
+ 0.01174815293
+ ]
+ },
+ {
+ "learn": [
+ 0.9967810187,
+ 0.01054407809
+ ],
+ "iteration": 2900,
+ "passed_time": 91.72176362,
+ "remaining_time": 1489.142828,
+ "test": [
+ 0.9963623405,
+ 0.01160562444
+ ]
+ },
+ {
+ "learn": [
+ 0.9968366874,
+ 0.01037903075
+ ],
+ "iteration": 3000,
+ "passed_time": 95.36004584,
+ "remaining_time": 1493.44445,
+ "test": [
+ 0.9964011516,
+ 0.01144941609
+ ]
+ },
+ {
+ "learn": [
+ 0.9968704022,
+ 0.01024204822
+ ],
+ "iteration": 3100,
+ "passed_time": 99.02936505,
+ "remaining_time": 1497.703383,
+ "test": [
+ 0.9964293779,
+ 0.01132401045
+ ]
+ },
+ {
+ "learn": [
+ 0.9969076453,
+ 0.01009866069
+ ],
+ "iteration": 3200,
+ "passed_time": 101.7341989,
+ "remaining_time": 1487.366064,
+ "test": [
+ 0.9964399627,
+ 0.01119437104
+ ]
+ },
+ {
+ "learn": [
+ 0.9969586096,
+ 0.009958186609
+ ],
+ "iteration": 3300,
+ "passed_time": 104.4381422,
+ "remaining_time": 1477.478583,
+ "test": [
+ 0.9964611324,
+ 0.01106808677
+ ]
+ },
+ {
+ "learn": [
+ 0.997000165,
+ 0.009843263573
+ ],
+ "iteration": 3400,
+ "passed_time": 107.1791916,
+ "remaining_time": 1468.521949,
+ "test": [
+ 0.9965246415,
+ 0.01096363031
+ ]
+ },
+ {
+ "learn": [
+ 0.9970330958,
+ 0.009727711141
+ ],
+ "iteration": 3500,
+ "passed_time": 111.6625875,
+ "remaining_time": 1483.061599,
+ "test": [
+ 0.9965387547,
+ 0.01086342743
+ ]
+ },
+ {
+ "learn": [
+ 0.9970652425,
+ 0.009626260404
+ ],
+ "iteration": 3600,
+ "passed_time": 114.3224443,
+ "remaining_time": 1473.048346,
+ "test": [
+ 0.9965881506,
+ 0.01077918451
+ ]
+ },
+ {
+ "learn": [
+ 0.9970856282,
+ 0.009528827237
+ ],
+ "iteration": 3700,
+ "passed_time": 117.0155676,
+ "remaining_time": 1463.848626,
+ "test": [
+ 0.9966163769,
+ 0.0106950863
+ ]
+ },
+ {
+ "learn": [
+ 0.9971122864,
+ 0.00943467658
+ ],
+ "iteration": 3800,
+ "passed_time": 119.7060457,
+ "remaining_time": 1454.959118,
+ "test": [
+ 0.9966234334,
+ 0.01061032396
+ ]
+ },
+ {
+ "learn": [
+ 0.9971397287,
+ 0.009334333029
+ ],
+ "iteration": 3900,
+ "passed_time": 124.2015733,
+ "remaining_time": 1467.718105,
+ "test": [
+ 0.996655188,
+ 0.01051843356
+ ]
+ },
+ {
+ "learn": [
+ 0.9971777559,
+ 0.009230231477
+ ],
+ "iteration": 4000,
+ "passed_time": 126.8920845,
+ "remaining_time": 1458.862534,
+ "test": [
+ 0.9967010557,
+ 0.01042795413
+ ]
+ },
+ {
+ "learn": [
+ 0.9972044141,
+ 0.009134379458
+ ],
+ "iteration": 4100,
+ "passed_time": 129.624901,
+ "remaining_time": 1450.78111,
+ "test": [
+ 0.9967151688,
+ 0.01034447441
+ ]
+ },
+ {
+ "learn": [
+ 0.9972291122,
+ 0.009052453792
+ ],
+ "iteration": 4200,
+ "passed_time": 132.3223133,
+ "remaining_time": 1442.568348,
+ "test": [
+ 0.9967469233,
+ 0.01027204986
+ ]
+ },
+ {
+ "learn": [
+ 0.9972553784,
+ 0.008961872011
+ ],
+ "iteration": 4300,
+ "passed_time": 136.8129714,
+ "remaining_time": 1453.665655,
+ "test": [
+ 0.9967575082,
+ 0.01019620901
+ ]
+ },
+ {
+ "learn": [
+ 0.9972824287,
+ 0.008875330006
+ ],
+ "iteration": 4400,
+ "passed_time": 139.5261723,
+ "remaining_time": 1445.638248,
+ "test": [
+ 0.9967998476,
+ 0.01011495083
+ ]
+ },
+ {
+ "learn": [
+ 0.9973035984,
+ 0.008800948674
+ ],
+ "iteration": 4500,
+ "passed_time": 142.2293175,
+ "remaining_time": 1437.745327,
+ "test": [
+ 0.9968245456,
+ 0.01005474606
+ ]
+ },
+ {
+ "learn": [
+ 0.9973239841,
+ 0.008724022192
+ ],
+ "iteration": 4600,
+ "passed_time": 144.9320145,
+ "remaining_time": 1430.073576,
+ "test": [
+ 0.9968104324,
+ 0.009984955664
+ ]
+ },
+ {
+ "learn": [
+ 0.9973533866,
+ 0.008648575787
+ ],
+ "iteration": 4700,
+ "passed_time": 148.9828654,
+ "remaining_time": 1435.604089,
+ "test": [
+ 0.9968210173,
+ 0.009924785351
+ ]
+ },
+ {
+ "learn": [
+ 0.9973686759,
+ 0.008586156049
+ ],
+ "iteration": 4800,
+ "passed_time": 152.1089583,
+ "remaining_time": 1432.029329,
+ "test": [
+ 0.9968280738,
+ 0.009869461258
+ ]
+ },
+ {
+ "learn": [
+ 0.997382005,
+ 0.008523600019
+ ],
+ "iteration": 4900,
+ "passed_time": 154.8005636,
+ "remaining_time": 1424.474723,
+ "test": [
+ 0.9968386587,
+ 0.009815033018
+ ]
+ },
+ {
+ "learn": [
+ 0.9974035668,
+ 0.008460501115
+ ],
+ "iteration": 5000,
+ "passed_time": 157.458219,
+ "remaining_time": 1416.809118,
+ "test": [
+ 0.9968633567,
+ 0.009759347999
+ ]
+ },
+ {
+ "learn": [
+ 0.9974255206,
+ 0.008398308788
+ ],
+ "iteration": 5100,
+ "passed_time": 160.6530819,
+ "remaining_time": 1414.068364,
+ "test": [
+ 0.9968986395,
+ 0.009706273875
+ ]
+ },
+ {
+ "learn": [
+ 0.9974412019,
+ 0.008348344514
+ ],
+ "iteration": 5200,
+ "passed_time": 164.6869037,
+ "remaining_time": 1418.53655,
+ "test": [
+ 0.9969268658,
+ 0.009666607398
+ ]
+ },
+ {
+ "learn": [
+ 0.9974604115,
+ 0.008283221129
+ ],
+ "iteration": 5300,
+ "passed_time": 167.3939949,
+ "remaining_time": 1411.496733,
+ "test": [
+ 0.996955092,
+ 0.009613483313
+ ]
+ },
+ {
+ "learn": [
+ 0.9974784451,
+ 0.008229800535
+ ],
+ "iteration": 5400,
+ "passed_time": 170.071785,
+ "remaining_time": 1404.375401,
+ "test": [
+ 0.9969445072,
+ 0.009570093016
+ ]
+ },
+ {
+ "learn": [
+ 0.9975007909,
+ 0.008171860078
+ ],
+ "iteration": 5500,
+ "passed_time": 172.7706931,
+ "remaining_time": 1397.586452,
+ "test": [
+ 0.9969515637,
+ 0.00952041452
+ ]
+ },
+ {
+ "learn": [
+ 0.9975054953,
+ 0.008123317689
+ ],
+ "iteration": 5600,
+ "passed_time": 177.2911033,
+ "remaining_time": 1405.382556,
+ "test": [
+ 0.9969621486,
+ 0.009482335597
+ ]
+ },
+ {
+ "learn": [
+ 0.997525881,
+ 0.008067014276
+ ],
+ "iteration": 5700,
+ "passed_time": 179.9588855,
+ "remaining_time": 1398.350933,
+ "test": [
+ 0.996955092,
+ 0.009434157655
+ ]
+ },
+ {
+ "learn": [
+ 0.9975403862,
+ 0.008015249102
+ ],
+ "iteration": 5800,
+ "passed_time": 182.7124059,
+ "remaining_time": 1392.123018,
+ "test": [
+ 0.9969692051,
+ 0.009388751689
+ ]
+ },
+ {
+ "learn": [
+ 0.9975568516,
+ 0.007970678342
+ ],
+ "iteration": 5900,
+ "passed_time": 185.3685704,
+ "remaining_time": 1385.285305,
+ "test": [
+ 0.9969868466,
+ 0.009349425463
+ ]
+ },
+ {
+ "learn": [
+ 0.9975780214,
+ 0.007920229387
+ ],
+ "iteration": 6000,
+ "passed_time": 189.9377065,
+ "remaining_time": 1392.612756,
+ "test": [
+ 0.99697979,
+ 0.009303523332
+ ]
+ },
+ {
+ "learn": [
+ 0.9975886063,
+ 0.007868974928
+ ],
+ "iteration": 6100,
+ "passed_time": 192.655816,
+ "remaining_time": 1386.231383,
+ "test": [
+ 0.9969939031,
+ 0.009258406795
+ ]
+ },
+ {
+ "learn": [
+ 0.9976050716,
+ 0.007823836792
+ ],
+ "iteration": 6200,
+ "passed_time": 195.3110167,
+ "remaining_time": 1379.523822,
+ "test": [
+ 0.9970080163,
+ 0.009220359745
+ ]
+ },
+ {
+ "learn": [
+ 0.9976136964,
+ 0.007781229259
+ ],
+ "iteration": 6300,
+ "passed_time": 197.987009,
+ "remaining_time": 1373.089082,
+ "test": [
+ 0.9970221294,
+ 0.009187626653
+ ]
+ },
+ {
+ "learn": [
+ 0.9976285936,
+ 0.007736546709
+ ],
+ "iteration": 6400,
+ "passed_time": 202.4825426,
+ "remaining_time": 1379.165189,
+ "test": [
+ 0.997004488,
+ 0.0091539555
+ ]
+ },
+ {
+ "learn": [
+ 0.9976442749,
+ 0.007688675063
+ ],
+ "iteration": 6500,
+ "passed_time": 205.1742077,
+ "remaining_time": 1372.846156,
+ "test": [
+ 0.9970186011,
+ 0.009114940239
+ ]
+ },
+ {
+ "learn": [
+ 0.997657212,
+ 0.007642062976
+ ],
+ "iteration": 6600,
+ "passed_time": 207.8803781,
+ "remaining_time": 1366.732394,
+ "test": [
+ 0.9970186011,
+ 0.009080381847
+ ]
+ },
+ {
+ "learn": [
+ 0.9976623084,
+ 0.007604473004
+ ],
+ "iteration": 6700,
+ "passed_time": 210.5251483,
+ "remaining_time": 1360.323593,
+ "test": [
+ 0.9970432991,
+ 0.009047976947
+ ]
+ },
+ {
+ "learn": [
+ 0.9976705411,
+ 0.007567599716
+ ],
+ "iteration": 6800,
+ "passed_time": 214.3259215,
+ "remaining_time": 1361.368252,
+ "test": [
+ 0.9970362425,
+ 0.009020671519
+ ]
+ },
+ {
+ "learn": [
+ 0.9976858304,
+ 0.007525342103
+ ],
+ "iteration": 6900,
+ "passed_time": 217.8488643,
+ "remaining_time": 1360.537343,
+ "test": [
+ 0.9970609405,
+ 0.008988345007
+ ]
+ },
+ {
+ "learn": [
+ 0.9977015117,
+ 0.007482840234
+ ],
+ "iteration": 7000,
+ "passed_time": 220.5126718,
+ "remaining_time": 1354.35286,
+ "test": [
+ 0.9970785819,
+ 0.008952620283
+ ]
+ },
+ {
+ "learn": [
+ 0.9977152329,
+ 0.007440479253
+ ],
+ "iteration": 7100,
+ "passed_time": 223.2061809,
+ "remaining_time": 1348.446973,
+ "test": [
+ 0.9970891668,
+ 0.008917010125
+ ]
+ },
+ {
+ "learn": [
+ 0.9977340504,
+ 0.007402055445
+ ],
+ "iteration": 7200,
+ "passed_time": 226.1869839,
+ "remaining_time": 1344.337832,
+ "test": [
+ 0.9970891668,
+ 0.008890108692
+ ]
+ },
+ {
+ "learn": [
+ 0.9977434592,
+ 0.007363394273
+ ],
+ "iteration": 7300,
+ "passed_time": 230.2626925,
+ "remaining_time": 1346.66302,
+ "test": [
+ 0.9970891668,
+ 0.008859412805
+ ]
+ },
+ {
+ "learn": [
+ 0.9977556122,
+ 0.007331468103
+ ],
+ "iteration": 7400,
+ "passed_time": 232.9642551,
+ "remaining_time": 1340.905865,
+ "test": [
+ 0.9971068082,
+ 0.008835423756
+ ]
+ },
+ {
+ "learn": [
+ 0.9977626688,
+ 0.007299309162
+ ],
+ "iteration": 7500,
+ "passed_time": 235.6316763,
+ "remaining_time": 1335.036744,
+ "test": [
+ 0.9971103365,
+ 0.008811600956
+ ]
+ },
+ {
+ "learn": [
+ 0.9977748219,
+ 0.007262951949
+ ],
+ "iteration": 7600,
+ "passed_time": 238.3237872,
+ "remaining_time": 1329.389587,
+ "test": [
+ 0.9971279779,
+ 0.008782208363
+ ]
+ },
+ {
+ "learn": [
+ 0.9977814864,
+ 0.007228137599
+ ],
+ "iteration": 7700,
+ "passed_time": 242.7898455,
+ "remaining_time": 1333.562872,
+ "test": [
+ 0.9971315062,
+ 0.008754162133
+ ]
+ },
+ {
+ "learn": [
+ 0.9977936394,
+ 0.007194403636
+ ],
+ "iteration": 7800,
+ "passed_time": 245.4839817,
+ "remaining_time": 1327.929566,
+ "test": [
+ 0.997142091,
+ 0.008727302047
+ ]
+ },
+ {
+ "learn": [
+ 0.9978097128,
+ 0.007162974398
+ ],
+ "iteration": 7900,
+ "passed_time": 248.1344181,
+ "remaining_time": 1322.137814,
+ "test": [
+ 0.9971491476,
+ 0.008699826063
+ ]
+ },
+ {
+ "learn": [
+ 0.9978206897,
+ 0.007135269471
+ ],
+ "iteration": 8000,
+ "passed_time": 250.7854834,
+ "remaining_time": 1316.427886,
+ "test": [
+ 0.997142091,
+ 0.00867890531
+ ]
+ },
+ {
+ "learn": [
+ 0.9978269622,
+ 0.00710000413
+ ],
+ "iteration": 8100,
+ "passed_time": 255.4060321,
+ "remaining_time": 1320.979798,
+ "test": [
+ 0.9971526758,
+ 0.008651531832
+ ]
+ },
+ {
+ "learn": [
+ 0.9978387232,
+ 0.007068668305
+ ],
+ "iteration": 8200,
+ "passed_time": 258.0598649,
+ "remaining_time": 1315.284026,
+ "test": [
+ 0.9971562041,
+ 0.008629485233
+ ]
+ },
+ {
+ "learn": [
+ 0.9978442117,
+ 0.007038318688
+ ],
+ "iteration": 8300,
+ "passed_time": 260.7387179,
+ "remaining_time": 1309.78723,
+ "test": [
+ 0.9971562041,
+ 0.008608135505
+ ]
+ },
+ {
+ "learn": [
+ 0.9978516603,
+ 0.007009852666
+ ],
+ "iteration": 8400,
+ "passed_time": 263.3711746,
+ "remaining_time": 1304.127782,
+ "test": [
+ 0.9971526758,
+ 0.008585837378
+ ]
+ },
+ {
+ "learn": [
+ 0.9978595009,
+ 0.006985602528
+ ],
+ "iteration": 8500,
+ "passed_time": 267.1711759,
+ "remaining_time": 1304.239105,
+ "test": [
+ 0.9971491476,
+ 0.008568751566
+ ]
+ },
+ {
+ "learn": [
+ 0.99787283,
+ 0.006959344753
+ ],
+ "iteration": 8600,
+ "passed_time": 270.676786,
+ "remaining_time": 1302.842491,
+ "test": [
+ 0.9971703173,
+ 0.008549898166
+ ]
+ },
+ {
+ "learn": [
+ 0.9978783185,
+ 0.006927657478
+ ],
+ "iteration": 8700,
+ "passed_time": 273.4217683,
+ "remaining_time": 1297.787106,
+ "test": [
+ 0.9971950152,
+ 0.00852403644
+ ]
+ },
+ {
+ "learn": [
+ 0.9978865512,
+ 0.006905722018
+ ],
+ "iteration": 8800,
+ "passed_time": 276.0809963,
+ "remaining_time": 1292.382793,
+ "test": [
+ 0.9972020718,
+ 0.008509969824
+ ]
+ },
+ {
+ "learn": [
+ 0.9978928237,
+ 0.006879046177
+ ],
+ "iteration": 8900,
+ "passed_time": 279.0981848,
+ "remaining_time": 1288.692989,
+ "test": [
+ 0.9971985435,
+ 0.008491050959
+ ]
+ },
+ {
+ "learn": [
+ 0.9978987042,
+ 0.00685084738
+ ],
+ "iteration": 9000,
+ "passed_time": 283.1891632,
+ "remaining_time": 1289.909177,
+ "test": [
+ 0.9972056001,
+ 0.008470945088
+ ]
+ },
+ {
+ "learn": [
+ 0.9979069369,
+ 0.00682611103
+ ],
+ "iteration": 9100,
+ "passed_time": 285.8958519,
+ "remaining_time": 1284.787875,
+ "test": [
+ 0.9972020718,
+ 0.008454031555
+ ]
+ },
+ {
+ "learn": [
+ 0.9979132094,
+ 0.006804134988
+ ],
+ "iteration": 9200,
+ "passed_time": 288.5471679,
+ "remaining_time": 1279.473525,
+ "test": [
+ 0.9972197132,
+ 0.008440990864
+ ]
+ },
+ {
+ "learn": [
+ 0.9979179138,
+ 0.006777272319
+ ],
+ "iteration": 9300,
+ "passed_time": 291.2092379,
+ "remaining_time": 1274.263496,
+ "test": [
+ 0.9972197132,
+ 0.00841852821
+ ]
+ },
+ {
+ "learn": [
+ 0.9979265385,
+ 0.006754035187
+ ],
+ "iteration": 9400,
+ "passed_time": 295.8032425,
+ "remaining_time": 1277.450892,
+ "test": [
+ 0.9972197132,
+ 0.008402349449
+ ]
+ },
+ {
+ "learn": [
+ 0.9979375155,
+ 0.006728423654
+ ],
+ "iteration": 9500,
+ "passed_time": 298.463373,
+ "remaining_time": 1272.231149,
+ "test": [
+ 0.9972302981,
+ 0.008379338086
+ ]
+ },
+ {
+ "learn": [
+ 0.9979461402,
+ 0.00669918888
+ ],
+ "iteration": 9600,
+ "passed_time": 301.1550371,
+ "remaining_time": 1267.197411,
+ "test": [
+ 0.9972444112,
+ 0.008355759062
+ ]
+ },
+ {
+ "learn": [
+ 0.9979500605,
+ 0.006670938017
+ ],
+ "iteration": 9700,
+ "passed_time": 303.873761,
+ "remaining_time": 1262.324368,
+ "test": [
+ 0.997254996,
+ 0.0083332051
+ ]
+ },
+ {
+ "learn": [
+ 0.997956333,
+ 0.006651376193
+ ],
+ "iteration": 9800,
+ "passed_time": 308.5439065,
+ "remaining_time": 1265.499081,
+ "test": [
+ 0.997254996,
+ 0.008321222204
+ ]
+ },
+ {
+ "learn": [
+ 0.9979633896,
+ 0.006630599986
+ ],
+ "iteration": 9900,
+ "passed_time": 311.1805243,
+ "remaining_time": 1260.279552,
+ "test": [
+ 0.9972691092,
+ 0.00830641048
+ ]
+ },
+ {
+ "learn": [
+ 0.9979747586,
+ 0.00660824646
+ ],
+ "iteration": 10000,
+ "passed_time": 313.8296772,
+ "remaining_time": 1255.16181,
+ "test": [
+ 0.9972761657,
+ 0.008288667422
+ ]
+ },
+ {
+ "learn": [
+ 0.9979786789,
+ 0.006588207612
+ ],
+ "iteration": 10100,
+ "passed_time": 316.4952454,
+ "remaining_time": 1250.157786,
+ "test": [
+ 0.9972691092,
+ 0.008272731575
+ ]
+ },
+ {
+ "learn": [
+ 0.9979947522,
+ 0.006568517918
+ ],
+ "iteration": 10200,
+ "passed_time": 320.2134758,
+ "remaining_time": 1249.306551,
+ "test": [
+ 0.997279694,
+ 0.008256822431
+ ]
+ },
+ {
+ "learn": [
+ 0.9980010248,
+ 0.006542854318
+ ],
+ "iteration": 10300,
+ "passed_time": 323.5710698,
+ "remaining_time": 1247.009795,
+ "test": [
+ 0.9972832223,
+ 0.008238077567
+ ]
+ },
+ {
+ "learn": [
+ 0.9980135698,
+ 0.006522344571
+ ],
+ "iteration": 10400,
+ "passed_time": 326.2194449,
+ "remaining_time": 1241.992481,
+ "test": [
+ 0.9972902789,
+ 0.008222644776
+ ]
+ },
+ {
+ "learn": [
+ 0.9980182742,
+ 0.006502416747
+ ],
+ "iteration": 10500,
+ "passed_time": 328.8569804,
+ "remaining_time": 1236.979513,
+ "test": [
+ 0.9972902789,
+ 0.008208069936
+ ]
+ },
+ {
+ "learn": [
+ 0.998028075,
+ 0.006480569342
+ ],
+ "iteration": 10600,
+ "passed_time": 331.5469567,
+ "remaining_time": 1232.206259,
+ "test": [
+ 0.9972938072,
+ 0.008192286557
+ ]
+ },
+ {
+ "learn": [
+ 0.9980363077,
+ 0.006457829908
+ ],
+ "iteration": 10700,
+ "passed_time": 336.0750285,
+ "remaining_time": 1234.222273,
+ "test": [
+ 0.9972938072,
+ 0.008175708968
+ ]
+ },
+ {
+ "learn": [
+ 0.9980492448,
+ 0.006433427398
+ ],
+ "iteration": 10800,
+ "passed_time": 338.760552,
+ "remaining_time": 1229.430134,
+ "test": [
+ 0.9973114486,
+ 0.008160038432
+ ]
+ },
+ {
+ "learn": [
+ 0.9980570855,
+ 0.006414226214
+ ],
+ "iteration": 10900,
+ "passed_time": 341.4424695,
+ "remaining_time": 1224.663711,
+ "test": [
+ 0.9973079203,
+ 0.008145612614
+ ]
+ },
+ {
+ "learn": [
+ 0.9980613978,
+ 0.006388484513
+ ],
+ "iteration": 11000,
+ "passed_time": 344.0799889,
+ "remaining_time": 1219.777792,
+ "test": [
+ 0.997304392,
+ 0.008128621555
+ ]
+ },
+ {
+ "learn": [
+ 0.9980661022,
+ 0.006368615265
+ ],
+ "iteration": 11100,
+ "passed_time": 348.5752723,
+ "remaining_time": 1221.442169,
+ "test": [
+ 0.9973149769,
+ 0.008114256896
+ ]
+ },
+ {
+ "learn": [
+ 0.9980727668,
+ 0.006347094809
+ ],
+ "iteration": 11200,
+ "passed_time": 351.2334351,
+ "remaining_time": 1216.632983,
+ "test": [
+ 0.9973185051,
+ 0.008098144462
+ ]
+ },
+ {
+ "learn": [
+ 0.9980821756,
+ 0.006329001576
+ ],
+ "iteration": 11300,
+ "passed_time": 353.8937864,
+ "remaining_time": 1211.86936,
+ "test": [
+ 0.9973255617,
+ 0.008084179492
+ ]
+ },
+ {
+ "learn": [
+ 0.9980884481,
+ 0.006309531252
+ ],
+ "iteration": 11400,
+ "passed_time": 356.5845653,
+ "remaining_time": 1207.245648,
+ "test": [
+ 0.9973361466,
+ 0.00806920238
+ ]
+ },
+ {
+ "learn": [
+ 0.9980908003,
+ 0.006290990857
+ ],
+ "iteration": 11500,
+ "passed_time": 360.984029,
+ "remaining_time": 1208.375283,
+ "test": [
+ 0.9973432031,
+ 0.008054681808
+ ]
+ },
+ {
+ "learn": [
+ 0.9980982489,
+ 0.006275124632
+ ],
+ "iteration": 11600,
+ "passed_time": 363.750781,
+ "remaining_time": 1204.005365,
+ "test": [
+ 0.9973432031,
+ 0.008044114188
+ ]
+ },
+ {
+ "learn": [
+ 0.9981060896,
+ 0.006255151633
+ ],
+ "iteration": 11700,
+ "passed_time": 366.3840916,
+ "remaining_time": 1199.226077,
+ "test": [
+ 0.9973502597,
+ 0.008029149996
+ ]
+ },
+ {
+ "learn": [
+ 0.9981088338,
+ 0.006239436248
+ ],
+ "iteration": 11800,
+ "passed_time": 369.065595,
+ "remaining_time": 1194.639155,
+ "test": [
+ 0.9973467314,
+ 0.008018754656
+ ]
+ },
+ {
+ "learn": [
+ 0.9981205948,
+ 0.006219763781
+ ],
+ "iteration": 11900,
+ "passed_time": 372.4019695,
+ "remaining_time": 1192.18071,
+ "test": [
+ 0.9973608445,
+ 0.008003920535
+ ]
+ },
+ {
+ "learn": [
+ 0.9981245151,
+ 0.006199587875
+ ],
+ "iteration": 12000,
+ "passed_time": 376.2535084,
+ "remaining_time": 1191.338811,
+ "test": [
+ 0.9973608445,
+ 0.007987740051
+ ]
+ },
+ {
+ "learn": [
+ 0.9981292195,
+ 0.006182881305
+ ],
+ "iteration": 12100,
+ "passed_time": 378.8887257,
+ "remaining_time": 1186.637783,
+ "test": [
+ 0.997353788,
+ 0.007978722946
+ ]
+ },
+ {
+ "learn": [
+ 0.9981378442,
+ 0.006166265853
+ ],
+ "iteration": 12200,
+ "passed_time": 381.5641946,
+ "remaining_time": 1182.095319,
+ "test": [
+ 0.9973608445,
+ 0.007969782505
+ ]
+ },
+ {
+ "learn": [
+ 0.9981413725,
+ 0.006153515982
+ ],
+ "iteration": 12300,
+ "passed_time": 384.1603675,
+ "remaining_time": 1177.340191,
+ "test": [
+ 0.9973608445,
+ 0.00796445218
+ ]
+ },
+ {
+ "learn": [
+ 0.998146861,
+ 0.006137529543
+ ],
+ "iteration": 12400,
+ "passed_time": 388.6424267,
+ "remaining_time": 1178.337763,
+ "test": [
+ 0.9973608445,
+ 0.007953886282
+ ]
+ },
+ {
+ "learn": [
+ 0.9981519574,
+ 0.006121295021
+ ],
+ "iteration": 12500,
+ "passed_time": 391.2834846,
+ "remaining_time": 1173.725253,
+ "test": [
+ 0.997353788,
+ 0.007943106758
+ ]
+ },
+ {
+ "learn": [
+ 0.9981637184,
+ 0.006106924568
+ ],
+ "iteration": 12600,
+ "passed_time": 393.9391912,
+ "remaining_time": 1169.18751,
+ "test": [
+ 0.9973784859,
+ 0.00793429122
+ ]
+ },
+ {
+ "learn": [
+ 0.9981692068,
+ 0.006090557199
+ ],
+ "iteration": 12700,
+ "passed_time": 396.6002717,
+ "remaining_time": 1164.695184,
+ "test": [
+ 0.9973749577,
+ 0.007922798459
+ ]
+ },
+ {
+ "learn": [
+ 0.9981739112,
+ 0.006075904973
+ ],
+ "iteration": 12800,
+ "passed_time": 401.1306253,
+ "remaining_time": 1165.663474,
+ "test": [
+ 0.9973784859,
+ 0.007913149088
+ ]
+ },
+ {
+ "learn": [
+ 0.9981790077,
+ 0.006058980183
+ ],
+ "iteration": 12900,
+ "passed_time": 403.7746828,
+ "remaining_time": 1161.122158,
+ "test": [
+ 0.9973820142,
+ 0.007902497051
+ ]
+ },
+ {
+ "learn": [
+ 0.9981801838,
+ 0.006046018215
+ ],
+ "iteration": 13000,
+ "passed_time": 406.3964309,
+ "remaining_time": 1156.546539,
+ "test": [
+ 0.9973961274,
+ 0.007892396308
+ ]
+ },
+ {
+ "learn": [
+ 0.9981841041,
+ 0.0060320107
+ ],
+ "iteration": 13100,
+ "passed_time": 409.0398369,
+ "remaining_time": 1152.061747,
+ "test": [
+ 0.9974031839,
+ 0.0078835868
+ ]
+ },
+ {
+ "learn": [
+ 0.9981888085,
+ 0.006016657486
+ ],
+ "iteration": 13200,
+ "passed_time": 412.6686106,
+ "remaining_time": 1150.351655,
+ "test": [
+ 0.9974031839,
+ 0.007871471249
+ ]
+ },
+ {
+ "learn": [
+ 0.9981919447,
+ 0.006002687489
+ ],
+ "iteration": 13300,
+ "passed_time": 416.1108824,
+ "remaining_time": 1148.098133,
+ "test": [
+ 0.9974067122,
+ 0.007862395568
+ ]
+ },
+ {
+ "learn": [
+ 0.9981931208,
+ 0.005988901258
+ ],
+ "iteration": 13400,
+ "passed_time": 418.749658,
+ "remaining_time": 1143.63247,
+ "test": [
+ 0.9974031839,
+ 0.007851988168
+ ]
+ },
+ {
+ "learn": [
+ 0.9982029217,
+ 0.005971587114
+ ],
+ "iteration": 13500,
+ "passed_time": 421.414864,
+ "remaining_time": 1139.265323,
+ "test": [
+ 0.9973961274,
+ 0.007841629006
+ ]
+ },
+ {
+ "learn": [
+ 0.9982103703,
+ 0.005951777589
+ ],
+ "iteration": 13600,
+ "passed_time": 424.1024029,
+ "remaining_time": 1134.982969,
+ "test": [
+ 0.9974031839,
+ 0.007828241171
+ ]
+ },
+ {
+ "learn": [
+ 0.9982115464,
+ 0.005935496743
+ ],
+ "iteration": 13700,
+ "passed_time": 428.6014496,
+ "remaining_time": 1135.523248,
+ "test": [
+ 0.9974208253,
+ 0.007817639095
+ ]
+ },
+ {
+ "learn": [
+ 0.9982197791,
+ 0.005916915001
+ ],
+ "iteration": 13800,
+ "passed_time": 431.2731305,
+ "remaining_time": 1131.197453,
+ "test": [
+ 0.9974455233,
+ 0.007805263403
+ ]
+ },
+ {
+ "learn": [
+ 0.9982233074,
+ 0.005900861564
+ ],
+ "iteration": 13900,
+ "passed_time": 433.9324005,
+ "remaining_time": 1126.863228,
+ "test": [
+ 0.9974490516,
+ 0.007793593194
+ ]
+ },
+ {
+ "learn": [
+ 0.9982260516,
+ 0.005885346024
+ ],
+ "iteration": 14000,
+ "passed_time": 436.5732286,
+ "remaining_time": 1122.505511,
+ "test": [
+ 0.9974455233,
+ 0.007784515791
+ ]
+ },
+ {
+ "learn": [
+ 0.9982350684,
+ 0.005869831633
+ ],
+ "iteration": 14100,
+ "passed_time": 441.0256973,
+ "remaining_time": 1122.784307,
+ "test": [
+ 0.9974455233,
+ 0.00777506368
+ ]
+ },
+ {
+ "learn": [
+ 0.9982366365,
+ 0.005855316848
+ ],
+ "iteration": 14200,
+ "passed_time": 443.6402684,
+ "remaining_time": 1118.363352,
+ "test": [
+ 0.9974596364,
+ 0.007768019174
+ ]
+ },
+ {
+ "learn": [
+ 0.9982405568,
+ 0.005841124036
+ ],
+ "iteration": 14300,
+ "passed_time": 446.2802289,
+ "remaining_time": 1114.031039,
+ "test": [
+ 0.997466693,
+ 0.007757704805
+ ]
+ },
+ {
+ "learn": [
+ 0.9982476134,
+ 0.005823417093
+ ],
+ "iteration": 14400,
+ "passed_time": 448.9592674,
+ "remaining_time": 1109.818829,
+ "test": [
+ 0.9974631647,
+ 0.007743685566
+ ]
+ },
+ {
+ "learn": [
+ 0.9982531019,
+ 0.005807903468
+ ],
+ "iteration": 14500,
+ "passed_time": 453.0174919,
+ "remaining_time": 1109.004065,
+ "test": [
+ 0.997466693,
+ 0.00773437817
+ ]
+ },
+ {
+ "learn": [
+ 0.9982558461,
+ 0.005794621442
+ ],
+ "iteration": 14600,
+ "passed_time": 456.2001044,
+ "remaining_time": 1106.022019,
+ "test": [
+ 0.997466693,
+ 0.007728600779
+ ]
+ },
+ {
+ "learn": [
+ 0.9982593744,
+ 0.005784074076
+ ],
+ "iteration": 14700,
+ "passed_time": 458.7973778,
+ "remaining_time": 1101.631769,
+ "test": [
+ 0.997466693,
+ 0.007723083531
+ ]
+ },
+ {
+ "learn": [
+ 0.9982676071,
+ 0.0057708579
+ ],
+ "iteration": 14800,
+ "passed_time": 461.4786429,
+ "remaining_time": 1097.465492,
+ "test": [
+ 0.997466693,
+ 0.007715778021
+ ]
+ },
+ {
+ "learn": [
+ 0.9982723115,
+ 0.005758472114
+ ],
+ "iteration": 14900,
+ "passed_time": 464.3332411,
+ "remaining_time": 1093.72743,
+ "test": [
+ 0.9974702213,
+ 0.007709259829
+ ]
+ },
+ {
+ "learn": [
+ 0.9982746637,
+ 0.005744437033
+ ],
+ "iteration": 15000,
+ "passed_time": 468.4891156,
+ "remaining_time": 1093.037168,
+ "test": [
+ 0.997466693,
+ 0.007698041854
+ ]
+ },
+ {
+ "learn": [
+ 0.998278192,
+ 0.0057332239
+ ],
+ "iteration": 15100,
+ "passed_time": 471.1568909,
+ "remaining_time": 1088.861952,
+ "test": [
+ 0.9974737496,
+ 0.007692255849
+ ]
+ },
+ {
+ "learn": [
+ 0.9982856406,
+ 0.005718042966
+ ],
+ "iteration": 15200,
+ "passed_time": 473.8139887,
+ "remaining_time": 1084.682126,
+ "test": [
+ 0.9974702213,
+ 0.007681487524
+ ]
+ },
+ {
+ "learn": [
+ 0.9982883848,
+ 0.005703790047
+ ],
+ "iteration": 15300,
+ "passed_time": 476.4527261,
+ "remaining_time": 1080.480566,
+ "test": [
+ 0.9974772779,
+ 0.007670773466
+ ]
+ },
+ {
+ "learn": [
+ 0.9982915211,
+ 0.005689606423
+ ],
+ "iteration": 15400,
+ "passed_time": 480.9128104,
+ "remaining_time": 1080.391035,
+ "test": [
+ 0.9974702213,
+ 0.007660275619
+ ]
+ },
+ {
+ "learn": [
+ 0.9982962255,
+ 0.005678309064
+ ],
+ "iteration": 15500,
+ "passed_time": 483.5800636,
+ "remaining_time": 1076.254991,
+ "test": [
+ 0.9974772779,
+ 0.007654349207
+ ]
+ },
+ {
+ "learn": [
+ 0.9982993617,
+ 0.005667197001
+ ],
+ "iteration": 15600,
+ "passed_time": 486.2078104,
+ "remaining_time": 1072.050668,
+ "test": [
+ 0.9974808061,
+ 0.007646962726
+ ]
+ },
+ {
+ "learn": [
+ 0.9983052422,
+ 0.005657282094
+ ],
+ "iteration": 15700,
+ "passed_time": 488.8122216,
+ "remaining_time": 1067.81545,
+ "test": [
+ 0.9974878627,
+ 0.007640231769
+ ]
+ },
+ {
+ "learn": [
+ 0.9983072024,
+ 0.005645264987
+ ],
+ "iteration": 15800,
+ "passed_time": 493.1668297,
+ "remaining_time": 1067.388925,
+ "test": [
+ 0.9974843344,
+ 0.007635000504
+ ]
+ },
+ {
+ "learn": [
+ 0.9983122988,
+ 0.005635355056
+ ],
+ "iteration": 15900,
+ "passed_time": 495.9199038,
+ "remaining_time": 1063.478574,
+ "test": [
+ 0.9974843344,
+ 0.007628113634
+ ]
+ },
+ {
+ "learn": [
+ 0.9983126908,
+ 0.005623329527
+ ],
+ "iteration": 16000,
+ "passed_time": 498.5556533,
+ "remaining_time": 1059.333395,
+ "test": [
+ 0.9974843344,
+ 0.007619317907
+ ]
+ },
+ {
+ "learn": [
+ 0.9983166112,
+ 0.005610720925
+ ],
+ "iteration": 16100,
+ "passed_time": 501.1816088,
+ "remaining_time": 1055.186346,
+ "test": [
+ 0.9974949193,
+ 0.007611392192
+ ]
+ },
+ {
+ "learn": [
+ 0.9983201395,
+ 0.005596785384
+ ],
+ "iteration": 16200,
+ "passed_time": 504.3429068,
+ "remaining_time": 1052.174922,
+ "test": [
+ 0.9974984476,
+ 0.007599934749
+ ]
+ },
+ {
+ "learn": [
+ 0.9983228837,
+ 0.005585694378
+ ],
+ "iteration": 16300,
+ "passed_time": 508.3830241,
+ "remaining_time": 1050.978439,
+ "test": [
+ 0.9974984476,
+ 0.007591590395
+ ]
+ },
+ {
+ "learn": [
+ 0.9983311164,
+ 0.005574748471
+ ],
+ "iteration": 16400,
+ "passed_time": 511.0262191,
+ "remaining_time": 1046.885552,
+ "test": [
+ 0.9975019758,
+ 0.007584848239
+ ]
+ },
+ {
+ "learn": [
+ 0.9983377809,
+ 0.005561783823
+ ],
+ "iteration": 16500,
+ "passed_time": 513.6970665,
+ "remaining_time": 1042.866374,
+ "test": [
+ 0.9975055041,
+ 0.00757385595
+ ]
+ },
+ {
+ "learn": [
+ 0.9983436614,
+ 0.005549566489
+ ],
+ "iteration": 16600,
+ "passed_time": 516.3504622,
+ "remaining_time": 1038.828329,
+ "test": [
+ 0.9975055041,
+ 0.007565800164
+ ]
+ },
+ {
+ "learn": [
+ 0.9983452296,
+ 0.005537470899
+ ],
+ "iteration": 16700,
+ "passed_time": 520.7848959,
+ "remaining_time": 1038.357958,
+ "test": [
+ 0.997516089,
+ 0.007561257156
+ ]
+ },
+ {
+ "learn": [
+ 0.9983487579,
+ 0.005525878749
+ ],
+ "iteration": 16800,
+ "passed_time": 523.4602748,
+ "remaining_time": 1034.364482,
+ "test": [
+ 0.9975090324,
+ 0.007551876541
+ ]
+ },
+ {
+ "learn": [
+ 0.9983515021,
+ 0.005517129221
+ ],
+ "iteration": 16900,
+ "passed_time": 526.0256726,
+ "remaining_time": 1030.171217,
+ "test": [
+ 0.997516089,
+ 0.007547161253
+ ]
+ },
+ {
+ "learn": [
+ 0.9983546384,
+ 0.005503965877
+ ],
+ "iteration": 17000,
+ "passed_time": 528.6772833,
+ "remaining_time": 1026.164442,
+ "test": [
+ 0.997516089,
+ 0.007537722063
+ ]
+ },
+ {
+ "learn": [
+ 0.9983585587,
+ 0.005493457178
+ ],
+ "iteration": 17100,
+ "passed_time": 532.955985,
+ "remaining_time": 1025.303722,
+ "test": [
+ 0.9975125607,
+ 0.007531985158
+ ]
+ },
+ {
+ "learn": [
+ 0.9983605188,
+ 0.005483218001
+ ],
+ "iteration": 17200,
+ "passed_time": 535.7683253,
+ "remaining_time": 1021.607192,
+ "test": [
+ 0.997516089,
+ 0.007525428203
+ ]
+ },
+ {
+ "learn": [
+ 0.9983640471,
+ 0.005474354384
+ ],
+ "iteration": 17300,
+ "passed_time": 538.3880436,
+ "remaining_time": 1017.556826,
+ "test": [
+ 0.9975125607,
+ 0.007521346042
+ ]
+ },
+ {
+ "learn": [
+ 0.9983687515,
+ 0.005464974311
+ ],
+ "iteration": 17400,
+ "passed_time": 541.0128088,
+ "remaining_time": 1013.532358,
+ "test": [
+ 0.9975231455,
+ 0.007516851271
+ ]
+ },
+ {
+ "learn": [
+ 0.9983671834,
+ 0.005456376388
+ ],
+ "iteration": 17500,
+ "passed_time": 544.1477425,
+ "remaining_time": 1010.471258,
+ "test": [
+ 0.997516089,
+ 0.007512408185
+ ]
+ },
+ {
+ "learn": [
+ 0.9983734559,
+ 0.005447125333
+ ],
+ "iteration": 17600,
+ "passed_time": 548.0860904,
+ "remaining_time": 1008.888202,
+ "test": [
+ 0.9975196173,
+ 0.007508295875
+ ]
+ },
+ {
+ "learn": [
+ 0.9983730639,
+ 0.005435309603
+ ],
+ "iteration": 17700,
+ "passed_time": 550.7348607,
+ "remaining_time": 1004.925443,
+ "test": [
+ 0.9975196173,
+ 0.007501508065
+ ]
+ },
+ {
+ "learn": [
+ 0.9983773763,
+ 0.005424187586
+ ],
+ "iteration": 17800,
+ "passed_time": 553.4055848,
+ "remaining_time": 1001.017158,
+ "test": [
+ 0.9975196173,
+ 0.007494434272
+ ]
+ },
+ {
+ "learn": [
+ 0.9983769842,
+ 0.005415516923
+ ],
+ "iteration": 17900,
+ "passed_time": 556.0790327,
+ "remaining_time": 997.1275834,
+ "test": [
+ 0.9975231455,
+ 0.007489546704
+ ]
+ },
+ {
+ "learn": [
+ 0.9983793364,
+ 0.005404764352
+ ],
+ "iteration": 18000,
+ "passed_time": 560.440962,
+ "remaining_time": 996.253005,
+ "test": [
+ 0.9975231455,
+ 0.007481776902
+ ]
+ },
+ {
+ "learn": [
+ 0.9983828647,
+ 0.005391137001
+ ],
+ "iteration": 18100,
+ "passed_time": 563.1310478,
+ "remaining_time": 992.3936409,
+ "test": [
+ 0.9975302021,
+ 0.007470712256
+ ]
+ },
+ {
+ "learn": [
+ 0.9983871771,
+ 0.005378899758
+ ],
+ "iteration": 18200,
+ "passed_time": 565.7650466,
+ "remaining_time": 988.4491356,
+ "test": [
+ 0.9975231455,
+ 0.007461566802
+ ]
+ },
+ {
+ "learn": [
+ 0.9983899213,
+ 0.005366678213
+ ],
+ "iteration": 18300,
+ "passed_time": 568.3724828,
+ "remaining_time": 984.4729431,
+ "test": [
+ 0.9975302021,
+ 0.007452949385
+ ]
+ },
+ {
+ "learn": [
+ 0.998397762,
+ 0.005356572649
+ ],
+ "iteration": 18400,
+ "passed_time": 572.9837928,
+ "remaining_time": 983.9527671,
+ "test": [
+ 0.9975196173,
+ 0.007448693222
+ ]
+ },
+ {
+ "learn": [
+ 0.9984028584,
+ 0.005346607588
+ ],
+ "iteration": 18500,
+ "passed_time": 575.6025346,
+ "remaining_time": 979.995905,
+ "test": [
+ 0.9975196173,
+ 0.007442052711
+ ]
+ },
+ {
+ "learn": [
+ 0.9984048186,
+ 0.005336933873
+ ],
+ "iteration": 18600,
+ "passed_time": 578.2036734,
+ "remaining_time": 976.023716,
+ "test": [
+ 0.9975266738,
+ 0.007435885108
+ ]
+ },
+ {
+ "learn": [
+ 0.9984087389,
+ 0.005327339406
+ ],
+ "iteration": 18700,
+ "passed_time": 580.8084554,
+ "remaining_time": 972.0722873,
+ "test": [
+ 0.9975231455,
+ 0.007428401289
+ ]
+ },
+ {
+ "learn": [
+ 0.9984142273,
+ 0.005317994554
+ ],
+ "iteration": 18800,
+ "passed_time": 583.9805225,
+ "remaining_time": 969.0765556,
+ "test": [
+ 0.9975266738,
+ 0.007423135569
+ ]
+ },
+ {
+ "learn": [
+ 0.9984173636,
+ 0.005310174189
+ ],
+ "iteration": 18900,
+ "passed_time": 587.9210224,
+ "remaining_time": 967.3433087,
+ "test": [
+ 0.9975266738,
+ 0.00742046696
+ ]
+ },
+ {
+ "learn": [
+ 0.9984193238,
+ 0.005301737061
+ ],
+ "iteration": 19000,
+ "passed_time": 590.5218076,
+ "remaining_time": 963.4011638,
+ "test": [
+ 0.9975372587,
+ 0.007415606096
+ ]
+ },
+ {
+ "learn": [
+ 0.998422068,
+ 0.005289617735
+ ],
+ "iteration": 19100,
+ "passed_time": 593.1934444,
+ "remaining_time": 959.5876781,
+ "test": [
+ 0.9975302021,
+ 0.007409025883
+ ]
+ },
+ {
+ "learn": [
+ 0.9984279485,
+ 0.005279543564
+ ],
+ "iteration": 19200,
+ "passed_time": 595.8220102,
+ "remaining_time": 955.7169988,
+ "test": [
+ 0.9975266738,
+ 0.007402445671
+ ]
+ },
+ {
+ "learn": [
+ 0.9984303007,
+ 0.005270812412
+ ],
+ "iteration": 19300,
+ "passed_time": 600.2214528,
+ "remaining_time": 954.6758395,
+ "test": [
+ 0.9975337304,
+ 0.007396734607
+ ]
+ },
+ {
+ "learn": [
+ 0.9984314768,
+ 0.005261863804
+ ],
+ "iteration": 19400,
+ "passed_time": 602.8570162,
+ "remaining_time": 950.8180939,
+ "test": [
+ 0.9975266738,
+ 0.007391213913
+ ]
+ },
+ {
+ "learn": [
+ 0.998434221,
+ 0.005252671707
+ ],
+ "iteration": 19500,
+ "passed_time": 605.4731225,
+ "remaining_time": 946.9424523,
+ "test": [
+ 0.9975337304,
+ 0.007384502768
+ ]
+ },
+ {
+ "learn": [
+ 0.9984357891,
+ 0.00524385518
+ ],
+ "iteration": 19600,
+ "passed_time": 608.0738169,
+ "remaining_time": 943.0557604,
+ "test": [
+ 0.9975337304,
+ 0.007379299068
+ ]
+ },
+ {
+ "learn": [
+ 0.9984365732,
+ 0.005237722393
+ ],
+ "iteration": 19700,
+ "passed_time": 612.1911327,
+ "remaining_time": 941.5145998,
+ "test": [
+ 0.9975372587,
+ 0.007375565773
+ ]
+ },
+ {
+ "learn": [
+ 0.9984408856,
+ 0.00522980402
+ ],
+ "iteration": 19800,
+ "passed_time": 615.1313533,
+ "remaining_time": 938.1522014,
+ "test": [
+ 0.9975407869,
+ 0.007371755813
+ ]
+ },
+ {
+ "learn": [
+ 0.9984424537,
+ 0.005221026544
+ ],
+ "iteration": 19900,
+ "passed_time": 617.7161326,
+ "remaining_time": 934.2564632,
+ "test": [
+ 0.9975443152,
+ 0.007367119774
+ ]
+ },
+ {
+ "learn": [
+ 0.9984471581,
+ 0.005210999845
+ ],
+ "iteration": 20000,
+ "passed_time": 620.3183876,
+ "remaining_time": 930.4000454,
+ "test": [
+ 0.9975443152,
+ 0.007359911602
+ ]
+ },
+ {
+ "learn": [
+ 0.9984499023,
+ 0.005200717024
+ ],
+ "iteration": 20100,
+ "passed_time": 623.2825086,
+ "remaining_time": 927.0943597,
+ "test": [
+ 0.9975443152,
+ 0.007354589891
+ ]
+ },
+ {
+ "learn": [
+ 0.9984561748,
+ 0.005190809008
+ ],
+ "iteration": 20200,
+ "passed_time": 627.42992,
+ "remaining_time": 925.5375569,
+ "test": [
+ 0.9975478435,
+ 0.007348586814
+ ]
+ },
+ {
+ "learn": [
+ 0.9984608792,
+ 0.00518031256
+ ],
+ "iteration": 20300,
+ "passed_time": 630.0171416,
+ "remaining_time": 921.6727791,
+ "test": [
+ 0.9975478435,
+ 0.007340436274
+ ]
+ },
+ {
+ "learn": [
+ 0.9984616633,
+ 0.005170434788
+ ],
+ "iteration": 20400,
+ "passed_time": 632.6794746,
+ "remaining_time": 917.9295019,
+ "test": [
+ 0.9975443152,
+ 0.007335878622
+ ]
+ },
+ {
+ "learn": [
+ 0.9984644075,
+ 0.005161851796
+ ],
+ "iteration": 20500,
+ "passed_time": 635.2940568,
+ "remaining_time": 914.1280612,
+ "test": [
+ 0.9975443152,
+ 0.00732989708
+ ]
+ },
+ {
+ "learn": [
+ 0.9984706801,
+ 0.005153209081
+ ],
+ "iteration": 20600,
+ "passed_time": 639.6530831,
+ "remaining_time": 912.8275808,
+ "test": [
+ 0.9975478435,
+ 0.007323580455
+ ]
+ },
+ {
+ "learn": [
+ 0.9984726402,
+ 0.005144069817
+ ],
+ "iteration": 20700,
+ "passed_time": 642.2304981,
+ "remaining_time": 908.9759607,
+ "test": [
+ 0.9975478435,
+ 0.007318416379
+ ]
+ },
+ {
+ "learn": [
+ 0.9984753845,
+ 0.005135152602
+ ],
+ "iteration": 20800,
+ "passed_time": 644.8677012,
+ "remaining_time": 905.2205186,
+ "test": [
+ 0.9975513718,
+ 0.007313949173
+ ]
+ },
+ {
+ "learn": [
+ 0.9984793048,
+ 0.005125975436
+ ],
+ "iteration": 20900,
+ "passed_time": 647.5040204,
+ "remaining_time": 901.4745461,
+ "test": [
+ 0.9975584284,
+ 0.007307200127
+ ]
+ },
+ {
+ "learn": [
+ 0.9984832251,
+ 0.005117832716
+ ],
+ "iteration": 21000,
+ "passed_time": 651.1857436,
+ "remaining_time": 899.182676,
+ "test": [
+ 0.9975619566,
+ 0.007302695881
+ ]
+ },
+ {
+ "learn": [
+ 0.9984836171,
+ 0.005108606928
+ ],
+ "iteration": 21100,
+ "passed_time": 654.5256163,
+ "remaining_time": 896.4094491,
+ "test": [
+ 0.9975549001,
+ 0.007297459448
+ ]
+ },
+ {
+ "learn": [
+ 0.9984863614,
+ 0.005100654482
+ ],
+ "iteration": 21200,
+ "passed_time": 657.131372,
+ "remaining_time": 892.6336674,
+ "test": [
+ 0.9975584284,
+ 0.007292889736
+ ]
+ },
+ {
+ "learn": [
+ 0.9984891056,
+ 0.005092520567
+ ],
+ "iteration": 21300,
+ "passed_time": 659.7429807,
+ "remaining_time": 888.8767571,
+ "test": [
+ 0.9975584284,
+ 0.007287453458
+ ]
+ },
+ {
+ "learn": [
+ 0.9984910658,
+ 0.005084604873
+ ],
+ "iteration": 21400,
+ "passed_time": 662.3922723,
+ "remaining_time": 885.1809073,
+ "test": [
+ 0.9975584284,
+ 0.007283030184
+ ]
+ },
+ {
+ "learn": [
+ 0.9984926339,
+ 0.005076296764
+ ],
+ "iteration": 21500,
+ "passed_time": 666.7469565,
+ "remaining_time": 883.7552445,
+ "test": [
+ 0.9975654849,
+ 0.007279121164
+ ]
+ },
+ {
+ "learn": [
+ 0.9984965542,
+ 0.005068260858
+ ],
+ "iteration": 21600,
+ "passed_time": 669.3396888,
+ "remaining_time": 879.9860109,
+ "test": [
+ 0.9975690132,
+ 0.007271881982
+ ]
+ },
+ {
+ "learn": [
+ 0.9984965542,
+ 0.00506060703
+ ],
+ "iteration": 21700,
+ "passed_time": 671.9269197,
+ "remaining_time": 876.2204461,
+ "test": [
+ 0.9975725415,
+ 0.007266329416
+ ]
+ },
+ {
+ "learn": [
+ 0.9984992985,
+ 0.005054922554
+ ],
+ "iteration": 21800,
+ "passed_time": 674.5065467,
+ "remaining_time": 872.4558557,
+ "test": [
+ 0.9975690132,
+ 0.007264142329
+ ]
+ },
+ {
+ "learn": [
+ 0.9985012586,
+ 0.005049094512
+ ],
+ "iteration": 21900,
+ "passed_time": 678.9910277,
+ "remaining_time": 871.1460156,
+ "test": [
+ 0.9975725415,
+ 0.007261549523
+ ]
+ },
+ {
+ "learn": [
+ 0.9985083152,
+ 0.005041692596
+ ],
+ "iteration": 22000,
+ "passed_time": 681.5691108,
+ "remaining_time": 867.3811888,
+ "test": [
+ 0.9975760698,
+ 0.007258139252
+ ]
+ },
+ {
+ "learn": [
+ 0.9985098833,
+ 0.005034057528
+ ],
+ "iteration": 22100,
+ "passed_time": 684.1661589,
+ "remaining_time": 863.6510414,
+ "test": [
+ 0.9975795981,
+ 0.007254388729
+ ]
+ },
+ {
+ "learn": [
+ 0.9985122355,
+ 0.005025514735
+ ],
+ "iteration": 22200,
+ "passed_time": 686.8194466,
+ "remaining_time": 860.0015222,
+ "test": [
+ 0.9975831263,
+ 0.007247500136
+ ]
+ },
+ {
+ "learn": [
+ 0.9985161559,
+ 0.005017616269
+ ],
+ "iteration": 22300,
+ "passed_time": 690.3215005,
+ "remaining_time": 857.4151492,
+ "test": [
+ 0.9975866546,
+ 0.007242978662
+ ]
+ },
+ {
+ "learn": [
+ 0.998517332,
+ 0.005009426076
+ ],
+ "iteration": 22400,
+ "passed_time": 693.9517707,
+ "remaining_time": 854.9785688,
+ "test": [
+ 0.9975831263,
+ 0.007238931818
+ ]
+ },
+ {
+ "learn": [
+ 0.998517724,
+ 0.005002369486
+ ],
+ "iteration": 22500,
+ "passed_time": 696.545068,
+ "remaining_time": 851.2640693,
+ "test": [
+ 0.9975937112,
+ 0.007236194298
+ ]
+ },
+ {
+ "learn": [
+ 0.9985185081,
+ 0.00499354492
+ ],
+ "iteration": 22600,
+ "passed_time": 699.181515,
+ "remaining_time": 847.6118016,
+ "test": [
+ 0.9975901829,
+ 0.007231833045
+ ]
+ },
+ {
+ "learn": [
+ 0.9985236045,
+ 0.004984897993
+ ],
+ "iteration": 22700,
+ "passed_time": 701.7617666,
+ "remaining_time": 843.900906,
+ "test": [
+ 0.9975972395,
+ 0.007224402633
+ ]
+ },
+ {
+ "learn": [
+ 0.9985271328,
+ 0.004979300041
+ ],
+ "iteration": 22800,
+ "passed_time": 706.1522312,
+ "remaining_time": 842.359306,
+ "test": [
+ 0.9976007678,
+ 0.007221144398
+ ]
+ },
+ {
+ "learn": [
+ 0.9985271328,
+ 0.004972596816
+ ],
+ "iteration": 22900,
+ "passed_time": 708.7733034,
+ "remaining_time": 838.6990852,
+ "test": [
+ 0.9976007678,
+ 0.007216344262
+ ]
+ },
+ {
+ "learn": [
+ 0.998530269,
+ 0.004963121414
+ ],
+ "iteration": 23000,
+ "passed_time": 711.4041899,
+ "remaining_time": 835.0594201,
+ "test": [
+ 0.9975901829,
+ 0.007211666445
+ ]
+ },
+ {
+ "learn": [
+ 0.9985326212,
+ 0.004956461067
+ ],
+ "iteration": 23100,
+ "passed_time": 714.0135766,
+ "remaining_time": 831.4034542,
+ "test": [
+ 0.9976007678,
+ 0.007209370822
+ ]
+ },
+ {
+ "learn": [
+ 0.9985349734,
+ 0.004947987569
+ ],
+ "iteration": 23200,
+ "passed_time": 718.1351505,
+ "remaining_time": 829.5032066,
+ "test": [
+ 0.9976007678,
+ 0.007206180638
+ ]
+ },
+ {
+ "learn": [
+ 0.9985373256,
+ 0.004939786274
+ ],
+ "iteration": 23300,
+ "passed_time": 721.0154575,
+ "remaining_time": 826.1616111,
+ "test": [
+ 0.997604296,
+ 0.007201331833
+ ]
+ },
+ {
+ "learn": [
+ 0.9985408539,
+ 0.004933332281
+ ],
+ "iteration": 23400,
+ "passed_time": 723.643597,
+ "remaining_time": 822.537329,
+ "test": [
+ 0.997604296,
+ 0.007197126492
+ ]
+ },
+ {
+ "learn": [
+ 0.9985443822,
+ 0.004926341157
+ ],
+ "iteration": 23500,
+ "passed_time": 726.2173542,
+ "remaining_time": 818.8602046,
+ "test": [
+ 0.9976007678,
+ 0.007192599419
+ ]
+ },
+ {
+ "learn": [
+ 0.9985455583,
+ 0.004918630668
+ ],
+ "iteration": 23600,
+ "passed_time": 729.1680332,
+ "remaining_time": 815.614038,
+ "test": [
+ 0.9976007678,
+ 0.00718880195
+ ]
+ },
+ {
+ "learn": [
+ 0.9985498707,
+ 0.00491056222
+ ],
+ "iteration": 23700,
+ "passed_time": 733.275007,
+ "remaining_time": 813.6534074,
+ "test": [
+ 0.9976078243,
+ 0.007184507885
+ ]
+ },
+ {
+ "learn": [
+ 0.9985522229,
+ 0.004904255239
+ ],
+ "iteration": 23800,
+ "passed_time": 735.8565377,
+ "remaining_time": 809.9956066,
+ "test": [
+ 0.9976007678,
+ 0.007180069106
+ ]
+ },
+ {
+ "learn": [
+ 0.9985573193,
+ 0.00489485564
+ ],
+ "iteration": 23900,
+ "passed_time": 738.526075,
+ "remaining_time": 806.4429117,
+ "test": [
+ 0.9976184092,
+ 0.007171922442
+ ]
+ },
+ {
+ "learn": [
+ 0.9985581034,
+ 0.004887735115
+ ],
+ "iteration": 24000,
+ "passed_time": 741.1112824,
+ "remaining_time": 802.806226,
+ "test": [
+ 0.9976219375,
+ 0.007168106022
+ ]
+ },
+ {
+ "learn": [
+ 0.9985581034,
+ 0.00487821224
+ ],
+ "iteration": 24100,
+ "passed_time": 745.5203088,
+ "remaining_time": 801.1381469,
+ "test": [
+ 0.9976325223,
+ 0.007160488257
+ ]
+ },
+ {
+ "learn": [
+ 0.9985643759,
+ 0.004869335224
+ ],
+ "iteration": 24200,
+ "passed_time": 748.1644229,
+ "remaining_time": 797.5659661,
+ "test": [
+ 0.997628994,
+ 0.007157373014
+ ]
+ },
+ {
+ "learn": [
+ 0.9985639839,
+ 0.004864183285
+ ],
+ "iteration": 24300,
+ "passed_time": 750.7242948,
+ "remaining_time": 793.912335,
+ "test": [
+ 0.9976325223,
+ 0.007156296698
+ ]
+ },
+ {
+ "learn": [
+ 0.9985682962,
+ 0.004856964369
+ ],
+ "iteration": 24400,
+ "passed_time": 753.3052422,
+ "remaining_time": 790.2897789,
+ "test": [
+ 0.9976254657,
+ 0.007152682706
+ ]
+ },
+ {
+ "learn": [
+ 0.9985714325,
+ 0.004851068563
+ ],
+ "iteration": 24500,
+ "passed_time": 757.0569848,
+ "remaining_time": 787.8942107,
+ "test": [
+ 0.997628994,
+ 0.007150961204
+ ]
+ },
+ {
+ "learn": [
+ 0.9985706484,
+ 0.004845453765
+ ],
+ "iteration": 24600,
+ "passed_time": 760.2779489,
+ "remaining_time": 784.9396213,
+ "test": [
+ 0.997628994,
+ 0.007148643615
+ ]
+ },
+ {
+ "learn": [
+ 0.9985745688,
+ 0.004838775425
+ ],
+ "iteration": 24700,
+ "passed_time": 762.8744216,
+ "remaining_time": 781.3432651,
+ "test": [
+ 0.9976254657,
+ 0.007144508047
+ ]
+ },
+ {
+ "learn": [
+ 0.998577705,
+ 0.004832335598
+ ],
+ "iteration": 24800,
+ "passed_time": 765.4989335,
+ "remaining_time": 777.7834614,
+ "test": [
+ 0.9976219375,
+ 0.007141185639
+ ]
+ },
+ {
+ "learn": [
+ 0.9985788811,
+ 0.004825860165
+ ],
+ "iteration": 24900,
+ "passed_time": 768.0838389,
+ "remaining_time": 774.1912482,
+ "test": [
+ 0.997628994,
+ 0.007135589141
+ ]
+ },
+ {
+ "learn": [
+ 0.9985800572,
+ 0.004818670728
+ ],
+ "iteration": 25000,
+ "passed_time": 772.5494271,
+ "remaining_time": 772.4876257,
+ "test": [
+ 0.9976360506,
+ 0.007132047076
+ ]
+ },
+ {
+ "learn": [
+ 0.9985839775,
+ 0.004811629451
+ ],
+ "iteration": 25100,
+ "passed_time": 775.129669,
+ "remaining_time": 768.8918222,
+ "test": [
+ 0.9976219375,
+ 0.007129078271
+ ]
+ },
+ {
+ "learn": [
+ 0.9985831935,
+ 0.004804101197
+ ],
+ "iteration": 25200,
+ "passed_time": 777.7208981,
+ "remaining_time": 765.3148903,
+ "test": [
+ 0.9976431071,
+ 0.00712383107
+ ]
+ },
+ {
+ "learn": [
+ 0.9985878979,
+ 0.00479622417
+ ],
+ "iteration": 25300,
+ "passed_time": 780.3397057,
+ "remaining_time": 761.7726727,
+ "test": [
+ 0.9976395789,
+ 0.007118661395
+ ]
+ },
+ {
+ "learn": [
+ 0.9985875058,
+ 0.004789744527
+ ],
+ "iteration": 25400,
+ "passed_time": 784.732184,
+ "remaining_time": 759.9553953,
+ "test": [
+ 0.9976360506,
+ 0.007115601282
+ ]
+ },
+ {
+ "learn": [
+ 0.9985929943,
+ 0.004781976994
+ ],
+ "iteration": 25500,
+ "passed_time": 787.3274998,
+ "remaining_time": 756.3913736,
+ "test": [
+ 0.997628994,
+ 0.007111440734
+ ]
+ },
+ {
+ "learn": [
+ 0.9985973067,
+ 0.004775658145
+ ],
+ "iteration": 25600,
+ "passed_time": 789.9365169,
+ "remaining_time": 752.8479777,
+ "test": [
+ 0.9976325223,
+ 0.007108620519
+ ]
+ },
+ {
+ "learn": [
+ 0.9985984828,
+ 0.004766830133
+ ],
+ "iteration": 25700,
+ "passed_time": 792.523944,
+ "remaining_time": 749.2914406,
+ "test": [
+ 0.9976431071,
+ 0.007102804797
+ ]
+ },
+ {
+ "learn": [
+ 0.998601619,
+ 0.004760667485
+ ],
+ "iteration": 25800,
+ "passed_time": 795.6896218,
+ "remaining_time": 746.2847626,
+ "test": [
+ 0.9976360506,
+ 0.007100436385
+ ]
+ },
+ {
+ "learn": [
+ 0.9986055393,
+ 0.004753250255
+ ],
+ "iteration": 25900,
+ "passed_time": 799.5389282,
+ "remaining_time": 743.9129235,
+ "test": [
+ 0.9976466354,
+ 0.007096417106
+ ]
+ },
+ {
+ "learn": [
+ 0.9986055393,
+ 0.004747456669
+ ],
+ "iteration": 26000,
+ "passed_time": 802.1545509,
+ "remaining_time": 740.391026,
+ "test": [
+ 0.9976466354,
+ 0.007094543567
+ ]
+ },
+ {
+ "learn": [
+ 0.9986090676,
+ 0.004739842657
+ ],
+ "iteration": 26100,
+ "passed_time": 804.76101,
+ "remaining_time": 736.8676824,
+ "test": [
+ 0.997653692,
+ 0.007090087129
+ ]
+ },
+ {
+ "learn": [
+ 0.9986102437,
+ 0.004734433064
+ ],
+ "iteration": 26200,
+ "passed_time": 807.3336732,
+ "remaining_time": 733.32064,
+ "test": [
+ 0.9976466354,
+ 0.007086013582
+ ]
+ },
+ {
+ "learn": [
+ 0.9986125959,
+ 0.004728669339
+ ],
+ "iteration": 26300,
+ "passed_time": 811.7650896,
+ "remaining_time": 731.4558708,
+ "test": [
+ 0.9976572203,
+ 0.007083122733
+ ]
+ },
+ {
+ "learn": [
+ 0.998613772,
+ 0.004723680492
+ ],
+ "iteration": 26400,
+ "passed_time": 814.3358795,
+ "remaining_time": 727.9085042,
+ "test": [
+ 0.9976466354,
+ 0.007079441122
+ ]
+ },
+ {
+ "learn": [
+ 0.9986149481,
+ 0.004717642268
+ ],
+ "iteration": 26500,
+ "passed_time": 816.9566271,
+ "remaining_time": 724.4128063,
+ "test": [
+ 0.9976466354,
+ 0.007076130342
+ ]
+ },
+ {
+ "learn": [
+ 0.9986169083,
+ 0.004711089884
+ ],
+ "iteration": 26600,
+ "passed_time": 819.5409483,
+ "remaining_time": 720.8916451,
+ "test": [
+ 0.9976501637,
+ 0.007072530994
+ ]
+ },
+ {
+ "learn": [
+ 0.9986212207,
+ 0.004704530226
+ ],
+ "iteration": 26700,
+ "passed_time": 823.6523853,
+ "remaining_time": 718.7100455,
+ "test": [
+ 0.9976431071,
+ 0.007068895467
+ ]
+ },
+ {
+ "learn": [
+ 0.9986231808,
+ 0.004700262658
+ ],
+ "iteration": 26800,
+ "passed_time": 826.5242528,
+ "remaining_time": 715.4410709,
+ "test": [
+ 0.9976431071,
+ 0.007067326002
+ ]
+ },
+ {
+ "learn": [
+ 0.9986223968,
+ 0.004693078198
+ ],
+ "iteration": 26900,
+ "passed_time": 829.1118609,
+ "remaining_time": 711.9309644,
+ "test": [
+ 0.9976431071,
+ 0.007063518196
+ ]
+ },
+ {
+ "learn": [
+ 0.998625533,
+ 0.004686955365
+ ],
+ "iteration": 27000,
+ "passed_time": 831.7174783,
+ "remaining_time": 708.4430311,
+ "test": [
+ 0.9976501637,
+ 0.007059493748
+ ]
+ },
+ {
+ "learn": [
+ 0.9986271011,
+ 0.004680268603
+ ],
+ "iteration": 27100,
+ "passed_time": 834.5503299,
+ "remaining_time": 705.1536107,
+ "test": [
+ 0.9976466354,
+ 0.007058073735
+ ]
+ },
+ {
+ "learn": [
+ 0.9986294533,
+ 0.004673061555
+ ],
+ "iteration": 27200,
+ "passed_time": 838.7468111,
+ "remaining_time": 703.0104976,
+ "test": [
+ 0.9976466354,
+ 0.007055127757
+ ]
+ },
+ {
+ "learn": [
+ 0.9986329816,
+ 0.004667139715
+ ],
+ "iteration": 27300,
+ "passed_time": 841.3807768,
+ "remaining_time": 699.5532124,
+ "test": [
+ 0.9976501637,
+ 0.007053722818
+ ]
+ },
+ {
+ "learn": [
+ 0.9986325896,
+ 0.004662890524
+ ],
+ "iteration": 27400,
+ "passed_time": 843.9646799,
+ "remaining_time": 696.0606474,
+ "test": [
+ 0.9976501637,
+ 0.007051517641
+ ]
+ },
+ {
+ "learn": [
+ 0.9986345498,
+ 0.004656588903
+ ],
+ "iteration": 27500,
+ "passed_time": 846.5821598,
+ "remaining_time": 692.6021604,
+ "test": [
+ 0.9976501637,
+ 0.007047965239
+ ]
+ },
+ {
+ "learn": [
+ 0.9986388621,
+ 0.0046510568
+ ],
+ "iteration": 27600,
+ "passed_time": 851.0379105,
+ "remaining_time": 690.6415767,
+ "test": [
+ 0.9976431071,
+ 0.007043830533
+ ]
+ },
+ {
+ "learn": [
+ 0.9986392542,
+ 0.004645388404
+ ],
+ "iteration": 27700,
+ "passed_time": 853.6494784,
+ "remaining_time": 687.178431,
+ "test": [
+ 0.9976501637,
+ 0.007039931419
+ ]
+ },
+ {
+ "learn": [
+ 0.9986419984,
+ 0.004638152642
+ ],
+ "iteration": 27800,
+ "passed_time": 856.2444189,
+ "remaining_time": 683.7081348,
+ "test": [
+ 0.997653692,
+ 0.007034990014
+ ]
+ },
+ {
+ "learn": [
+ 0.9986419984,
+ 0.004632501091
+ ],
+ "iteration": 27900,
+ "passed_time": 858.8453478,
+ "remaining_time": 680.2488563,
+ "test": [
+ 0.9976501637,
+ 0.007032600929
+ ]
+ },
+ {
+ "learn": [
+ 0.9986439586,
+ 0.004626009962
+ ],
+ "iteration": 28000,
+ "passed_time": 862.5932575,
+ "remaining_time": 677.6968348,
+ "test": [
+ 0.9976607486,
+ 0.007028702246
+ ]
+ },
+ {
+ "learn": [
+ 0.9986443506,
+ 0.004619889427
+ ],
+ "iteration": 28100,
+ "passed_time": 865.9326914,
+ "remaining_time": 674.8179783,
+ "test": [
+ 0.9976642768,
+ 0.007025835085
+ ]
+ },
+ {
+ "learn": [
+ 0.998648663,
+ 0.004614152119
+ ],
+ "iteration": 28200,
+ "passed_time": 868.4959438,
+ "remaining_time": 671.3358774,
+ "test": [
+ 0.9976572203,
+ 0.007021784365
+ ]
+ },
+ {
+ "learn": [
+ 0.9986514072,
+ 0.004609144129
+ ],
+ "iteration": 28300,
+ "passed_time": 871.087229,
+ "remaining_time": 667.8817633,
+ "test": [
+ 0.9976607486,
+ 0.00701902531
+ ]
+ },
+ {
+ "learn": [
+ 0.9986537594,
+ 0.004604203521
+ ],
+ "iteration": 28400,
+ "passed_time": 873.7076225,
+ "remaining_time": 664.4558621,
+ "test": [
+ 0.9976607486,
+ 0.007016396326
+ ]
+ },
+ {
+ "learn": [
+ 0.9986557195,
+ 0.004598801967
+ ],
+ "iteration": 28500,
+ "passed_time": 878.1452206,
+ "remaining_time": 662.4063751,
+ "test": [
+ 0.9976607486,
+ 0.007013763035
+ ]
+ },
+ {
+ "learn": [
+ 0.9986596399,
+ 0.004593488851
+ ],
+ "iteration": 28600,
+ "passed_time": 880.724093,
+ "remaining_time": 658.9495076,
+ "test": [
+ 0.9976642768,
+ 0.007010506092
+ ]
+ },
+ {
+ "learn": [
+ 0.9986616,
+ 0.004588539437
+ ],
+ "iteration": 28700,
+ "passed_time": 883.3326061,
+ "remaining_time": 655.5207546,
+ "test": [
+ 0.9976748617,
+ 0.007009343206
+ ]
+ },
+ {
+ "learn": [
+ 0.9986639522,
+ 0.004583233212
+ ],
+ "iteration": 28800,
+ "passed_time": 885.9299376,
+ "remaining_time": 652.0894673,
+ "test": [
+ 0.9976819183,
+ 0.007004851881
+ ]
+ },
+ {
+ "learn": [
+ 0.9986655204,
+ 0.004576585499
+ ],
+ "iteration": 28900,
+ "passed_time": 890.4566631,
+ "remaining_time": 650.0724935,
+ "test": [
+ 0.99767839,
+ 0.007000249006
+ ]
+ },
+ {
+ "learn": [
+ 0.9986666965,
+ 0.004571285017
+ ],
+ "iteration": 29000,
+ "passed_time": 893.0426038,
+ "remaining_time": 646.6329312,
+ "test": [
+ 0.9976854465,
+ 0.00699814892
+ ]
+ },
+ {
+ "learn": [
+ 0.9986666965,
+ 0.004565008281
+ ],
+ "iteration": 29100,
+ "passed_time": 895.6337611,
+ "remaining_time": 643.2029818,
+ "test": [
+ 0.9976748617,
+ 0.006993943579
+ ]
+ },
+ {
+ "learn": [
+ 0.9986666965,
+ 0.004559146548
+ ],
+ "iteration": 29200,
+ "passed_time": 898.2274859,
+ "remaining_time": 639.7806061,
+ "test": [
+ 0.99767839,
+ 0.006991022581
+ ]
+ },
+ {
+ "learn": [
+ 0.9986706168,
+ 0.004552905417
+ ],
+ "iteration": 29300,
+ "passed_time": 901.6483646,
+ "remaining_time": 636.94821,
+ "test": [
+ 0.9976713334,
+ 0.006988290229
+ ]
+ },
+ {
+ "learn": [
+ 0.998672969,
+ 0.004546831206
+ ],
+ "iteration": 29400,
+ "passed_time": 905.2929174,
+ "remaining_time": 634.2685216,
+ "test": [
+ 0.9976713334,
+ 0.006984833873
+ ]
+ },
+ {
+ "learn": [
+ 0.9986741451,
+ 0.004542729792
+ ],
+ "iteration": 29500,
+ "passed_time": 907.843066,
+ "remaining_time": 630.8218369,
+ "test": [
+ 0.9976678051,
+ 0.006983298002
+ ]
+ },
+ {
+ "learn": [
+ 0.9986764973,
+ 0.004536080931
+ ],
+ "iteration": 29600,
+ "passed_time": 910.4735447,
+ "remaining_time": 627.4365676,
+ "test": [
+ 0.9976748617,
+ 0.006981137618
+ ]
+ },
+ {
+ "learn": [
+ 0.9986772813,
+ 0.00453019508
+ ],
+ "iteration": 29700,
+ "passed_time": 913.0766181,
+ "remaining_time": 624.0376509,
+ "test": [
+ 0.9976819183,
+ 0.006977975429
+ ]
+ },
+ {
+ "learn": [
+ 0.9986792415,
+ 0.004524724231
+ ],
+ "iteration": 29800,
+ "passed_time": 917.507524,
+ "remaining_time": 621.882973,
+ "test": [
+ 0.9976748617,
+ 0.006974737006
+ ]
+ },
+ {
+ "learn": [
+ 0.9986780654,
+ 0.004520598699
+ ],
+ "iteration": 29900,
+ "passed_time": 920.0747054,
+ "remaining_time": 618.4603024,
+ "test": [
+ 0.9976748617,
+ 0.006973272201
+ ]
+ },
+ {
+ "learn": [
+ 0.9986812017,
+ 0.004514789799
+ ],
+ "iteration": 30000,
+ "passed_time": 922.6669633,
+ "remaining_time": 615.0600513,
+ "test": [
+ 0.9976889748,
+ 0.006970284445
+ ]
+ },
+ {
+ "learn": [
+ 0.9986819857,
+ 0.004509224771
+ ],
+ "iteration": 30100,
+ "passed_time": 925.2941212,
+ "remaining_time": 611.6882402,
+ "test": [
+ 0.9976889748,
+ 0.00696769853
+ ]
+ },
+ {
+ "learn": [
+ 0.9986859061,
+ 0.004505657042
+ ],
+ "iteration": 30200,
+ "passed_time": 929.7363901,
+ "remaining_time": 609.5113005,
+ "test": [
+ 0.9976889748,
+ 0.006967079617
+ ]
+ },
+ {
+ "learn": [
+ 0.9986882583,
+ 0.004501422016
+ ],
+ "iteration": 30300,
+ "passed_time": 932.3238731,
+ "remaining_time": 606.1135928,
+ "test": [
+ 0.9976854465,
+ 0.006964784855
+ ]
+ },
+ {
+ "learn": [
+ 0.9986910025,
+ 0.004494682038
+ ],
+ "iteration": 30400,
+ "passed_time": 934.991255,
+ "remaining_time": 602.7727248,
+ "test": [
+ 0.9976889748,
+ 0.006960865067
+ ]
+ },
+ {
+ "learn": [
+ 0.9986917866,
+ 0.004490309571
+ ],
+ "iteration": 30500,
+ "passed_time": 937.5950138,
+ "remaining_time": 599.3955993,
+ "test": [
+ 0.9976889748,
+ 0.006958735262
+ ]
+ },
+ {
+ "learn": [
+ 0.9986949228,
+ 0.004484085668
+ ],
+ "iteration": 30600,
+ "passed_time": 940.783636,
+ "remaining_time": 596.3942928,
+ "test": [
+ 0.9976854465,
+ 0.006956350484
+ ]
+ },
+ {
+ "learn": [
+ 0.9986953149,
+ 0.004479341075
+ ],
+ "iteration": 30700,
+ "passed_time": 944.629579,
+ "remaining_time": 593.8049655,
+ "test": [
+ 0.9976889748,
+ 0.006955315946
+ ]
+ },
+ {
+ "learn": [
+ 0.9986957069,
+ 0.004472983559
+ ],
+ "iteration": 30800,
+ "passed_time": 947.253298,
+ "remaining_time": 590.4456371,
+ "test": [
+ 0.9976819183,
+ 0.006951257904
+ ]
+ },
+ {
+ "learn": [
+ 0.9987000192,
+ 0.004468590418
+ ],
+ "iteration": 30900,
+ "passed_time": 949.8174503,
+ "remaining_time": 587.0542533,
+ "test": [
+ 0.9976819183,
+ 0.006948241292
+ ]
+ },
+ {
+ "learn": [
+ 0.9986984511,
+ 0.004463062143
+ ],
+ "iteration": 31000,
+ "passed_time": 952.4253612,
+ "remaining_time": 583.695024,
+ "test": [
+ 0.9976854465,
+ 0.006947392385
+ ]
+ },
+ {
+ "learn": [
+ 0.9987019794,
+ 0.004456662897
+ ],
+ "iteration": 31100,
+ "passed_time": 956.8433274,
+ "remaining_time": 581.4405339,
+ "test": [
+ 0.9976925031,
+ 0.006943768487
+ ]
+ },
+ {
+ "learn": [
+ 0.9987011953,
+ 0.004452655663
+ ],
+ "iteration": 31200,
+ "passed_time": 959.4021276,
+ "remaining_time": 578.0520046,
+ "test": [
+ 0.9976889748,
+ 0.006942473807
+ ]
+ },
+ {
+ "learn": [
+ 0.9987027635,
+ 0.004446931755
+ ],
+ "iteration": 31300,
+ "passed_time": 962.0385188,
+ "remaining_time": 574.7151293,
+ "test": [
+ 0.9976960314,
+ 0.006941381986
+ ]
+ },
+ {
+ "learn": [
+ 0.9987031555,
+ 0.004442683329
+ ],
+ "iteration": 31400,
+ "passed_time": 964.6407867,
+ "remaining_time": 571.3625041,
+ "test": [
+ 0.9976995597,
+ 0.006939929671
+ ]
+ },
+ {
+ "learn": [
+ 0.9987035475,
+ 0.004437219372
+ ],
+ "iteration": 31500,
+ "passed_time": 968.6455756,
+ "remaining_time": 568.8382751,
+ "test": [
+ 0.9976925031,
+ 0.006937212393
+ ]
+ },
+ {
+ "learn": [
+ 0.9987062918,
+ 0.004432276849
+ ],
+ "iteration": 31600,
+ "passed_time": 971.6088456,
+ "remaining_time": 565.6982738,
+ "test": [
+ 0.9976925031,
+ 0.006935096802
+ ]
+ },
+ {
+ "learn": [
+ 0.998709036,
+ 0.00442794458
+ ],
+ "iteration": 31700,
+ "passed_time": 974.2285865,
+ "remaining_time": 562.3610897,
+ "test": [
+ 0.9976995597,
+ 0.006932837357
+ ]
+ },
+ {
+ "learn": [
+ 0.998709036,
+ 0.0044238826
+ ],
+ "iteration": 31800,
+ "passed_time": 976.8120455,
+ "remaining_time": 559.0076544,
+ "test": [
+ 0.9976995597,
+ 0.006929832373
+ ]
+ },
+ {
+ "learn": [
+ 0.9987129563,
+ 0.004419342447
+ ],
+ "iteration": 31900,
+ "passed_time": 979.5145744,
+ "remaining_time": 555.7266005,
+ "test": [
+ 0.9977066162,
+ 0.006927671128
+ ]
+ },
+ {
+ "learn": [
+ 0.9987160926,
+ 0.004415420205
+ ],
+ "iteration": 32000,
+ "passed_time": 983.7263751,
+ "remaining_time": 553.298054,
+ "test": [
+ 0.997703088,
+ 0.006926417364
+ ]
+ },
+ {
+ "learn": [
+ 0.9987168767,
+ 0.004410101728
+ ],
+ "iteration": 32100,
+ "passed_time": 986.339348,
+ "remaining_time": 549.9669166,
+ "test": [
+ 0.9976995597,
+ 0.0069236652
+ ]
+ },
+ {
+ "learn": [
+ 0.9987180528,
+ 0.004405331868
+ ],
+ "iteration": 32200,
+ "passed_time": 988.9086749,
+ "remaining_time": 546.6161145,
+ "test": [
+ 0.9977066162,
+ 0.006919673917
+ ]
+ },
+ {
+ "learn": [
+ 0.9987227572,
+ 0.004400522958
+ ],
+ "iteration": 32300,
+ "passed_time": 991.508576,
+ "remaining_time": 543.286904,
+ "test": [
+ 0.9977101445,
+ 0.006916750765
+ ]
+ },
+ {
+ "learn": [
+ 0.9987227572,
+ 0.00439557699
+ ],
+ "iteration": 32400,
+ "passed_time": 995.9867948,
+ "remaining_time": 540.9824265,
+ "test": [
+ 0.9977066162,
+ 0.006913629062
+ ]
+ },
+ {
+ "learn": [
+ 0.9987270695,
+ 0.004391213328
+ ],
+ "iteration": 32500,
+ "passed_time": 998.5444134,
+ "remaining_time": 537.6304941,
+ "test": [
+ 0.9977101445,
+ 0.006912001022
+ ]
+ },
+ {
+ "learn": [
+ 0.9987258934,
+ 0.004386116902
+ ],
+ "iteration": 32600,
+ "passed_time": 1001.138324,
+ "remaining_time": 534.3028034,
+ "test": [
+ 0.9977101445,
+ 0.006907793527
+ ]
+ },
+ {
+ "learn": [
+ 0.9987270695,
+ 0.004381688922
+ ],
+ "iteration": 32700,
+ "passed_time": 1003.712186,
+ "remaining_time": 530.968995,
+ "test": [
+ 0.997703088,
+ 0.006905377739
+ ]
+ },
+ {
+ "learn": [
+ 0.9987282456,
+ 0.004377555732
+ ],
+ "iteration": 32800,
+ "passed_time": 1007.018604,
+ "remaining_time": 528.0239311,
+ "test": [
+ 0.997703088,
+ 0.00690423768
+ ]
+ },
+ {
+ "learn": [
+ 0.9987321659,
+ 0.00437181919
+ ],
+ "iteration": 32900,
+ "passed_time": 1010.70771,
+ "remaining_time": 525.2755579,
+ "test": [
+ 0.997703088,
+ 0.006901383871
+ ]
+ },
+ {
+ "learn": [
+ 0.998733342,
+ 0.004368000699
+ ],
+ "iteration": 33000,
+ "passed_time": 1013.329917,
+ "remaining_time": 521.9719176,
+ "test": [
+ 0.997703088,
+ 0.006900080146
+ ]
+ },
+ {
+ "learn": [
+ 0.9987349102,
+ 0.004363228159
+ ],
+ "iteration": 33100,
+ "passed_time": 1015.903393,
+ "remaining_time": 518.6475162,
+ "test": [
+ 0.9976995597,
+ 0.006897781508
+ ]
+ },
+ {
+ "learn": [
+ 0.9987360863,
+ 0.004358640533
+ ],
+ "iteration": 33200,
+ "passed_time": 1018.501361,
+ "remaining_time": 515.3400308,
+ "test": [
+ 0.9977066162,
+ 0.006896817174
+ ]
+ },
+ {
+ "learn": [
+ 0.9987364783,
+ 0.004354815533
+ ],
+ "iteration": 33300,
+ "passed_time": 1023.026671,
+ "remaining_time": 513.0032847,
+ "test": [
+ 0.9977136728,
+ 0.006894444886
+ ]
+ },
+ {
+ "learn": [
+ 0.9987372624,
+ 0.004350810979
+ ],
+ "iteration": 33400,
+ "passed_time": 1025.620434,
+ "remaining_time": 509.6935294,
+ "test": [
+ 0.9977101445,
+ 0.006892582976
+ ]
+ },
+ {
+ "learn": [
+ 0.9987400066,
+ 0.004345659423
+ ],
+ "iteration": 33500,
+ "passed_time": 1028.248059,
+ "remaining_time": 506.4047259,
+ "test": [
+ 0.9977066162,
+ 0.006890964842
+ ]
+ },
+ {
+ "learn": [
+ 0.9987400066,
+ 0.004341062226
+ ],
+ "iteration": 33600,
+ "passed_time": 1030.837663,
+ "remaining_time": 503.1013014,
+ "test": [
+ 0.9977066162,
+ 0.006888631317
+ ]
+ },
+ {
+ "learn": [
+ 0.9987419668,
+ 0.004336280881
+ ],
+ "iteration": 33700,
+ "passed_time": 1034.96222,
+ "remaining_time": 500.5444712,
+ "test": [
+ 0.9977136728,
+ 0.006886535968
+ ]
+ },
+ {
+ "learn": [
+ 0.9987431429,
+ 0.004333259855
+ ],
+ "iteration": 33800,
+ "passed_time": 1037.914609,
+ "remaining_time": 497.4166077,
+ "test": [
+ 0.9977207294,
+ 0.006884865719
+ ]
+ },
+ {
+ "learn": [
+ 0.998745103,
+ 0.004329521761
+ ],
+ "iteration": 33900,
+ "passed_time": 1040.497646,
+ "remaining_time": 494.1143803,
+ "test": [
+ 0.9977207294,
+ 0.006883418572
+ ]
+ },
+ {
+ "learn": [
+ 0.998744319,
+ 0.004323439893
+ ],
+ "iteration": 34000,
+ "passed_time": 1043.100676,
+ "remaining_time": 490.8257909,
+ "test": [
+ 0.9977242576,
+ 0.006879653405
+ ]
+ },
+ {
+ "learn": [
+ 0.9987466712,
+ 0.004319454481
+ ],
+ "iteration": 34100,
+ "passed_time": 1045.8558,
+ "remaining_time": 487.6121336,
+ "test": [
+ 0.9977242576,
+ 0.006877017961
+ ]
+ },
+ {
+ "learn": [
+ 0.9987462791,
+ 0.00431486341
+ ],
+ "iteration": 34200,
+ "passed_time": 1050.067475,
+ "remaining_time": 485.0740048,
+ "test": [
+ 0.9977242576,
+ 0.00687439716
+ ]
+ },
+ {
+ "learn": [
+ 0.9987490233,
+ 0.004310105418
+ ],
+ "iteration": 34300,
+ "passed_time": 1052.636552,
+ "remaining_time": 481.7743283,
+ "test": [
+ 0.9977277859,
+ 0.006871958114
+ ]
+ },
+ {
+ "learn": [
+ 0.9987509835,
+ 0.00430578272
+ ],
+ "iteration": 34400,
+ "passed_time": 1055.269609,
+ "remaining_time": 478.5079108,
+ "test": [
+ 0.9977242576,
+ 0.006869221455
+ ]
+ },
+ {
+ "learn": [
+ 0.9987525516,
+ 0.004300144569
+ ],
+ "iteration": 34500,
+ "passed_time": 1057.94177,
+ "remaining_time": 475.2627311,
+ "test": [
+ 0.9977348425,
+ 0.006867148503
+ ]
+ },
+ {
+ "learn": [
+ 0.9987545118,
+ 0.004296360151
+ ],
+ "iteration": 34600,
+ "passed_time": 1062.444742,
+ "remaining_time": 472.8356576,
+ "test": [
+ 0.9977348425,
+ 0.006865481269
+ ]
+ },
+ {
+ "learn": [
+ 0.9987556879,
+ 0.004291884315
+ ],
+ "iteration": 34700,
+ "passed_time": 1065.021216,
+ "remaining_time": 469.5472635,
+ "test": [
+ 0.9977348425,
+ 0.006862359996
+ ]
+ },
+ {
+ "learn": [
+ 0.9987584321,
+ 0.004287184899
+ ],
+ "iteration": 34800,
+ "passed_time": 1067.592296,
+ "remaining_time": 466.2606047,
+ "test": [
+ 0.9977313142,
+ 0.006860343465
+ ]
+ },
+ {
+ "learn": [
+ 0.998757256,
+ 0.004283896647
+ ],
+ "iteration": 34900,
+ "passed_time": 1070.174346,
+ "remaining_time": 462.9827929,
+ "test": [
+ 0.9977242576,
+ 0.00685982232
+ ]
+ },
+ {
+ "learn": [
+ 0.9987584321,
+ 0.004280137114
+ ],
+ "iteration": 35000,
+ "passed_time": 1073.899225,
+ "remaining_time": 460.1986938,
+ "test": [
+ 0.9977277859,
+ 0.006858642206
+ ]
+ },
+ {
+ "learn": [
+ 0.9987584321,
+ 0.004276632172
+ ],
+ "iteration": 35100,
+ "passed_time": 1077.218185,
+ "remaining_time": 457.2369372,
+ "test": [
+ 0.9977313142,
+ 0.00685710978
+ ]
+ },
+ {
+ "learn": [
+ 0.9987607843,
+ 0.004272731369
+ ],
+ "iteration": 35200,
+ "passed_time": 1079.820529,
+ "remaining_time": 453.9718761,
+ "test": [
+ 0.9977313142,
+ 0.006854790469
+ ]
+ },
+ {
+ "learn": [
+ 0.9987639206,
+ 0.004268589757
+ ],
+ "iteration": 35300,
+ "passed_time": 1082.406658,
+ "remaining_time": 450.7038174,
+ "test": [
+ 0.9977383708,
+ 0.006852437132
+ ]
+ },
+ {
+ "learn": [
+ 0.9987674489,
+ 0.004263707341
+ ],
+ "iteration": 35400,
+ "passed_time": 1085.059889,
+ "remaining_time": 447.4672839,
+ "test": [
+ 0.9977348425,
+ 0.0068499085
+ ]
+ },
+ {
+ "learn": [
+ 0.9987705852,
+ 0.004258460074
+ ],
+ "iteration": 35500,
+ "passed_time": 1089.465638,
+ "remaining_time": 444.9497842,
+ "test": [
+ 0.9977348425,
+ 0.006846604181
+ ]
+ },
+ {
+ "learn": [
+ 0.9987713692,
+ 0.004254261035
+ ],
+ "iteration": 35600,
+ "passed_time": 1092.053342,
+ "remaining_time": 441.6863591,
+ "test": [
+ 0.9977313142,
+ 0.006846168314
+ ]
+ },
+ {
+ "learn": [
+ 0.9987729373,
+ 0.004250608315
+ ],
+ "iteration": 35700,
+ "passed_time": 1094.646159,
+ "remaining_time": 438.4287674,
+ "test": [
+ 0.9977313142,
+ 0.00684431631
+ ]
+ },
+ {
+ "learn": [
+ 0.9987752895,
+ 0.004246879793
+ ],
+ "iteration": 35800,
+ "passed_time": 1097.208802,
+ "remaining_time": 435.1629223,
+ "test": [
+ 0.9977242576,
+ 0.00684369955
+ ]
+ },
+ {
+ "learn": [
+ 0.9987741134,
+ 0.004242946448
+ ],
+ "iteration": 35900,
+ "passed_time": 1101.614961,
+ "remaining_time": 432.6249781,
+ "test": [
+ 0.9977242576,
+ 0.00684161583
+ ]
+ },
+ {
+ "learn": [
+ 0.9987737214,
+ 0.004238170462
+ ],
+ "iteration": 36000,
+ "passed_time": 1104.192765,
+ "remaining_time": 429.3656985,
+ "test": [
+ 0.9977313142,
+ 0.006839930937
+ ]
+ },
+ {
+ "learn": [
+ 0.9987784258,
+ 0.0042335591
+ ],
+ "iteration": 36100,
+ "passed_time": 1106.828629,
+ "remaining_time": 426.1325478,
+ "test": [
+ 0.9977313142,
+ 0.006837360959
+ ]
+ },
+ {
+ "learn": [
+ 0.9987760736,
+ 0.004229495205
+ ],
+ "iteration": 36200,
+ "passed_time": 1109.445511,
+ "remaining_time": 422.8954618,
+ "test": [
+ 0.9977242576,
+ 0.006834639805
+ ]
+ },
+ {
+ "learn": [
+ 0.998780778,
+ 0.004224922128
+ ],
+ "iteration": 36300,
+ "passed_time": 1112.80681,
+ "remaining_time": 419.9427146,
+ "test": [
+ 0.9977313142,
+ 0.006833115132
+ ]
+ },
+ {
+ "learn": [
+ 0.9987764656,
+ 0.004220196678
+ ],
+ "iteration": 36400,
+ "passed_time": 1116.375559,
+ "remaining_time": 417.0652243,
+ "test": [
+ 0.9977348425,
+ 0.006830791513
+ ]
+ },
+ {
+ "learn": [
+ 0.9987780338,
+ 0.004216408431
+ ],
+ "iteration": 36500,
+ "passed_time": 1119.00005,
+ "remaining_time": 413.8347355,
+ "test": [
+ 0.9977348425,
+ 0.00682850192
+ ]
+ },
+ {
+ "learn": [
+ 0.9987799939,
+ 0.004211897374
+ ],
+ "iteration": 36600,
+ "passed_time": 1121.61342,
+ "remaining_time": 410.6034865,
+ "test": [
+ 0.9977348425,
+ 0.006827024193
+ ]
+ },
+ {
+ "learn": [
+ 0.99878117,
+ 0.00420897359
+ ],
+ "iteration": 36700,
+ "passed_time": 1124.176307,
+ "remaining_time": 407.3573121,
+ "test": [
+ 0.9977277859,
+ 0.006825799286
+ ]
+ },
+ {
+ "learn": [
+ 0.99878117,
+ 0.004205322019
+ ],
+ "iteration": 36800,
+ "passed_time": 1128.664834,
+ "remaining_time": 404.8054983,
+ "test": [
+ 0.9977348425,
+ 0.006824508913
+ ]
+ },
+ {
+ "learn": [
+ 0.9987835222,
+ 0.004201270758
+ ],
+ "iteration": 36900,
+ "passed_time": 1131.287736,
+ "remaining_time": 401.5809344,
+ "test": [
+ 0.9977313142,
+ 0.006822079343
+ ]
+ },
+ {
+ "learn": [
+ 0.9987854824,
+ 0.004196917433
+ ],
+ "iteration": 37000,
+ "passed_time": 1133.872617,
+ "remaining_time": 398.3462651,
+ "test": [
+ 0.9977383708,
+ 0.006819844878
+ ]
+ },
+ {
+ "learn": [
+ 0.9987878346,
+ 0.004192806066
+ ],
+ "iteration": 37100,
+ "passed_time": 1136.494938,
+ "remaining_time": 395.1281153,
+ "test": [
+ 0.9977383708,
+ 0.006817597063
+ ]
+ },
+ {
+ "learn": [
+ 0.9987913629,
+ 0.004187984139
+ ],
+ "iteration": 37200,
+ "passed_time": 1140.927167,
+ "remaining_time": 392.5358678,
+ "test": [
+ 0.9977418991,
+ 0.006815411267
+ ]
+ },
+ {
+ "learn": [
+ 0.998792931,
+ 0.00418427361
+ ],
+ "iteration": 37300,
+ "passed_time": 1143.65376,
+ "remaining_time": 389.3530763,
+ "test": [
+ 0.9977383708,
+ 0.006814276807
+ ]
+ },
+ {
+ "learn": [
+ 0.9987937151,
+ 0.004180539727
+ ],
+ "iteration": 37400,
+ "passed_time": 1146.246091,
+ "remaining_time": 386.1274967,
+ "test": [
+ 0.9977454273,
+ 0.00681295284
+ ]
+ },
+ {
+ "learn": [
+ 0.9987948912,
+ 0.004177827274
+ ],
+ "iteration": 37500,
+ "passed_time": 1148.837828,
+ "remaining_time": 382.9050962,
+ "test": [
+ 0.9977454273,
+ 0.006811669358
+ ]
+ },
+ {
+ "learn": [
+ 0.9987964593,
+ 0.004173069282
+ ],
+ "iteration": 37600,
+ "passed_time": 1151.89775,
+ "remaining_time": 379.8404352,
+ "test": [
+ 0.9977348425,
+ 0.006809007641
+ ]
+ },
+ {
+ "learn": [
+ 0.9987964593,
+ 0.004168775681
+ ],
+ "iteration": 37700,
+ "passed_time": 1155.775728,
+ "remaining_time": 377.0426695,
+ "test": [
+ 0.9977418991,
+ 0.006805921686
+ ]
+ },
+ {
+ "learn": [
+ 0.9988007717,
+ 0.004164245481
+ ],
+ "iteration": 37800,
+ "passed_time": 1158.37851,
+ "remaining_time": 373.8276617,
+ "test": [
+ 0.9977489556,
+ 0.006802935222
+ ]
+ },
+ {
+ "learn": [
+ 0.9988015557,
+ 0.004161113047
+ ],
+ "iteration": 37900,
+ "passed_time": 1160.961887,
+ "remaining_time": 370.6096902,
+ "test": [
+ 0.9977454273,
+ 0.006801944615
+ ]
+ },
+ {
+ "learn": [
+ 0.9988023398,
+ 0.004157923952
+ ],
+ "iteration": 38000,
+ "passed_time": 1163.533804,
+ "remaining_time": 367.39144,
+ "test": [
+ 0.9977418991,
+ 0.006800685683
+ ]
+ },
+ {
+ "learn": [
+ 0.9988027318,
+ 0.004155228727
+ ],
+ "iteration": 38100,
+ "passed_time": 1167.95113,
+ "remaining_time": 364.7529066,
+ "test": [
+ 0.9977489556,
+ 0.006799738577
+ ]
+ },
+ {
+ "learn": [
+ 0.9988035159,
+ 0.004152133812
+ ],
+ "iteration": 38200,
+ "passed_time": 1170.514866,
+ "remaining_time": 361.5325489,
+ "test": [
+ 0.9977489556,
+ 0.00679760102
+ ]
+ },
+ {
+ "learn": [
+ 0.9988023398,
+ 0.004147518238
+ ],
+ "iteration": 38300,
+ "passed_time": 1173.155623,
+ "remaining_time": 358.3391459,
+ "test": [
+ 0.9977489556,
+ 0.006794777791
+ ]
+ },
+ {
+ "learn": [
+ 0.9988043,
+ 0.004144816504
+ ],
+ "iteration": 38400,
+ "passed_time": 1175.720158,
+ "remaining_time": 355.1255985,
+ "test": [
+ 0.9977560122,
+ 0.006794064554
+ ]
+ },
+ {
+ "learn": [
+ 0.9988062601,
+ 0.004140026737
+ ],
+ "iteration": 38500,
+ "passed_time": 1179.738293,
+ "remaining_time": 352.3495658,
+ "test": [
+ 0.9977560122,
+ 0.006791384747
+ ]
+ },
+ {
+ "learn": [
+ 0.9988093964,
+ 0.004136597981
+ ],
+ "iteration": 38600,
+ "passed_time": 1182.798354,
+ "remaining_time": 349.2841748,
+ "test": [
+ 0.9977560122,
+ 0.006789736464
+ ]
+ },
+ {
+ "learn": [
+ 0.9988105725,
+ 0.004133461336
+ ],
+ "iteration": 38700,
+ "passed_time": 1185.348287,
+ "remaining_time": 346.0698765,
+ "test": [
+ 0.9977630688,
+ 0.006788696327
+ ]
+ },
+ {
+ "learn": [
+ 0.9988125327,
+ 0.004129373322
+ ],
+ "iteration": 38800,
+ "passed_time": 1187.959439,
+ "remaining_time": 342.8766723,
+ "test": [
+ 0.9977489556,
+ 0.006787862925
+ ]
+ },
+ {
+ "learn": [
+ 0.9988141008,
+ 0.004125168923
+ ],
+ "iteration": 38900,
+ "passed_time": 1190.591848,
+ "remaining_time": 339.6925252,
+ "test": [
+ 0.9977560122,
+ 0.006787498554
+ ]
+ },
+ {
+ "learn": [
+ 0.998816453,
+ 0.004121735191
+ ],
+ "iteration": 39000,
+ "passed_time": 1194.890819,
+ "remaining_time": 336.9812086,
+ "test": [
+ 0.9977595405,
+ 0.006785758101
+ ]
+ },
+ {
+ "learn": [
+ 0.9988152769,
+ 0.004117605447
+ ],
+ "iteration": 39100,
+ "passed_time": 1197.486682,
+ "remaining_time": 333.7870476,
+ "test": [
+ 0.9977560122,
+ 0.006784580571
+ ]
+ },
+ {
+ "learn": [
+ 0.998816845,
+ 0.004113818732
+ ],
+ "iteration": 39200,
+ "passed_time": 1200.095629,
+ "remaining_time": 330.5995433,
+ "test": [
+ 0.9977560122,
+ 0.006783973717
+ ]
+ },
+ {
+ "learn": [
+ 0.9988184132,
+ 0.004110823356
+ ],
+ "iteration": 39300,
+ "passed_time": 1202.694711,
+ "remaining_time": 327.4122978,
+ "test": [
+ 0.9977560122,
+ 0.006784034876
+ ]
+ },
+ {
+ "learn": [
+ 0.9988199813,
+ 0.00410713886
+ ],
+ "iteration": 39400,
+ "passed_time": 1207.11918,
+ "remaining_time": 324.7190728,
+ "test": [
+ 0.9977595405,
+ 0.006781412353
+ ]
+ },
+ {
+ "learn": [
+ 0.9988223335,
+ 0.004104109029
+ ],
+ "iteration": 39500,
+ "passed_time": 1209.700252,
+ "remaining_time": 321.5271245,
+ "test": [
+ 0.9977630688,
+ 0.006780960981
+ ]
+ },
+ {
+ "learn": [
+ 0.9988239016,
+ 0.004099272171
+ ],
+ "iteration": 39600,
+ "passed_time": 1212.335846,
+ "remaining_time": 318.3525786,
+ "test": [
+ 0.9977595405,
+ 0.006778789829
+ ]
+ },
+ {
+ "learn": [
+ 0.9988242936,
+ 0.004096033689
+ ],
+ "iteration": 39700,
+ "passed_time": 1214.921227,
+ "remaining_time": 315.1677217,
+ "test": [
+ 0.9977701253,
+ 0.006777271617
+ ]
+ },
+ {
+ "learn": [
+ 0.9988250777,
+ 0.004093324681
+ ],
+ "iteration": 39800,
+ "passed_time": 1218.072114,
+ "remaining_time": 312.1307879,
+ "test": [
+ 0.9977736536,
+ 0.006776821106
+ ]
+ },
+ {
+ "learn": [
+ 0.9988246857,
+ 0.004088225192
+ ],
+ "iteration": 39900,
+ "passed_time": 1221.91791,
+ "remaining_time": 309.2691655,
+ "test": [
+ 0.9977736536,
+ 0.006774761505
+ ]
+ },
+ {
+ "learn": [
+ 0.9988262538,
+ 0.004084345446
+ ],
+ "iteration": 40000,
+ "passed_time": 1224.505197,
+ "remaining_time": 306.0880344,
+ "test": [
+ 0.9977736536,
+ 0.00677303182
+ ]
+ },
+ {
+ "learn": [
+ 0.998828998,
+ 0.004080446174
+ ],
+ "iteration": 40100,
+ "passed_time": 1227.106143,
+ "remaining_time": 302.9132368,
+ "test": [
+ 0.9977771819,
+ 0.006772510675
+ ]
+ },
+ {
+ "learn": [
+ 0.998828606,
+ 0.004076964586
+ ],
+ "iteration": 40200,
+ "passed_time": 1229.672593,
+ "remaining_time": 299.7328856,
+ "test": [
+ 0.9977842385,
+ 0.006770398959
+ ]
+ },
+ {
+ "learn": [
+ 0.998828606,
+ 0.004073270136
+ ],
+ "iteration": 40300,
+ "passed_time": 1234.172334,
+ "remaining_time": 297.0208549,
+ "test": [
+ 0.9977771819,
+ 0.006769100834
+ ]
+ },
+ {
+ "learn": [
+ 0.9988321343,
+ 0.004070693975
+ ],
+ "iteration": 40400,
+ "passed_time": 1236.7436,
+ "remaining_time": 293.8417815,
+ "test": [
+ 0.9977701253,
+ 0.006768834232
+ ]
+ },
+ {
+ "learn": [
+ 0.9988333104,
+ 0.004067896148
+ ],
+ "iteration": 40500,
+ "passed_time": 1239.336839,
+ "remaining_time": 290.6708632,
+ "test": [
+ 0.9977771819,
+ 0.00676814296
+ ]
+ },
+ {
+ "learn": [
+ 0.9988329184,
+ 0.004064646563
+ ],
+ "iteration": 40600,
+ "passed_time": 1241.923288,
+ "remaining_time": 287.5012187,
+ "test": [
+ 0.9977701253,
+ 0.006767799694
+ ]
+ },
+ {
+ "learn": [
+ 0.9988329184,
+ 0.004060097222
+ ],
+ "iteration": 40700,
+ "passed_time": 1246.060264,
+ "remaining_time": 284.6886905,
+ "test": [
+ 0.9977771819,
+ 0.006764306728
+ ]
+ },
+ {
+ "learn": [
+ 0.9988340945,
+ 0.004057064327
+ ],
+ "iteration": 40800,
+ "passed_time": 1248.917468,
+ "remaining_time": 281.5811324,
+ "test": [
+ 0.9977736536,
+ 0.006761455073
+ ]
+ },
+ {
+ "learn": [
+ 0.9988356626,
+ 0.004054308613
+ ],
+ "iteration": 40900,
+ "passed_time": 1251.486165,
+ "remaining_time": 278.4106163,
+ "test": [
+ 0.9977736536,
+ 0.006760981735
+ ]
+ },
+ {
+ "learn": [
+ 0.9988364467,
+ 0.004051202595
+ ],
+ "iteration": 41000,
+ "passed_time": 1254.070785,
+ "remaining_time": 275.2465305,
+ "test": [
+ 0.9977736536,
+ 0.006760463605
+ ]
+ },
+ {
+ "learn": [
+ 0.9988368387,
+ 0.004048026134
+ ],
+ "iteration": 41100,
+ "passed_time": 1256.766702,
+ "remaining_time": 272.1093618,
+ "test": [
+ 0.9977771819,
+ 0.00675969007
+ ]
+ },
+ {
+ "learn": [
+ 0.9988364467,
+ 0.004045519651
+ ],
+ "iteration": 41200,
+ "passed_time": 1261.060243,
+ "remaining_time": 269.3155282,
+ "test": [
+ 0.9977771819,
+ 0.006758798524
+ ]
+ },
+ {
+ "learn": [
+ 0.9988380148,
+ 0.004041831709
+ ],
+ "iteration": 41300,
+ "passed_time": 1263.67449,
+ "remaining_time": 266.1607318,
+ "test": [
+ 0.9977771819,
+ 0.006757854864
+ ]
+ },
+ {
+ "learn": [
+ 0.9988411511,
+ 0.004038161762
+ ],
+ "iteration": 41400,
+ "passed_time": 1266.2749,
+ "remaining_time": 263.0056729,
+ "test": [
+ 0.9977701253,
+ 0.00675604593
+ ]
+ },
+ {
+ "learn": [
+ 0.9988411511,
+ 0.00403452627
+ ],
+ "iteration": 41500,
+ "passed_time": 1268.855422,
+ "remaining_time": 259.849214,
+ "test": [
+ 0.9977701253,
+ 0.006754225367
+ ]
+ },
+ {
+ "learn": [
+ 0.9988411511,
+ 0.004031737631
+ ],
+ "iteration": 41600,
+ "passed_time": 1273.326669,
+ "remaining_time": 257.0772505,
+ "test": [
+ 0.9977771819,
+ 0.006753081862
+ ]
+ },
+ {
+ "learn": [
+ 0.9988442873,
+ 0.00402833912
+ ],
+ "iteration": 41700,
+ "passed_time": 1275.955019,
+ "remaining_time": 253.9303782,
+ "test": [
+ 0.9977771819,
+ 0.00675180441
+ ]
+ },
+ {
+ "learn": [
+ 0.9988454634,
+ 0.004023740391
+ ],
+ "iteration": 41800,
+ "passed_time": 1278.562734,
+ "remaining_time": 250.7819397,
+ "test": [
+ 0.9977807102,
+ 0.00674973878
+ ]
+ },
+ {
+ "learn": [
+ 0.9988470315,
+ 0.004020668447
+ ],
+ "iteration": 41900,
+ "passed_time": 1281.141382,
+ "remaining_time": 247.6304636,
+ "test": [
+ 0.9977771819,
+ 0.006747554276
+ ]
+ },
+ {
+ "learn": [
+ 0.9988482076,
+ 0.004017151637
+ ],
+ "iteration": 42000,
+ "passed_time": 1284.772023,
+ "remaining_time": 244.6820651,
+ "test": [
+ 0.9977842385,
+ 0.006746703647
+ ]
+ },
+ {
+ "learn": [
+ 0.9988482076,
+ 0.004014447606
+ ],
+ "iteration": 42100,
+ "passed_time": 1288.205301,
+ "remaining_time": 241.6933962,
+ "test": [
+ 0.9977807102,
+ 0.006746102392
+ ]
+ },
+ {
+ "learn": [
+ 0.9988493837,
+ 0.004010616864
+ ],
+ "iteration": 42200,
+ "passed_time": 1290.810229,
+ "remaining_time": 238.5495362,
+ "test": [
+ 0.9977807102,
+ 0.006744638878
+ ]
+ },
+ {
+ "learn": [
+ 0.9988505598,
+ 0.004007838561
+ ],
+ "iteration": 42300,
+ "passed_time": 1293.39569,
+ "remaining_time": 235.4046812,
+ "test": [
+ 0.9977877667,
+ 0.006743052615
+ ]
+ },
+ {
+ "learn": [
+ 0.9988552642,
+ 0.004003413644
+ ],
+ "iteration": 42400,
+ "passed_time": 1296.02421,
+ "remaining_time": 232.2701817,
+ "test": [
+ 0.9977877667,
+ 0.006741038668
+ ]
+ },
+ {
+ "learn": [
+ 0.9988552642,
+ 0.004001023546
+ ],
+ "iteration": 42500,
+ "passed_time": 1300.464272,
+ "remaining_time": 229.4576969,
+ "test": [
+ 0.9977877667,
+ 0.006739842188
+ ]
+ },
+ {
+ "learn": [
+ 0.9988568324,
+ 0.003997216157
+ ],
+ "iteration": 42600,
+ "passed_time": 1303.053628,
+ "remaining_time": 226.3161379,
+ "test": [
+ 0.9977983516,
+ 0.006737654239
+ ]
+ },
+ {
+ "learn": [
+ 0.9988564403,
+ 0.003994043907
+ ],
+ "iteration": 42700,
+ "passed_time": 1305.674541,
+ "remaining_time": 223.1825595,
+ "test": [
+ 0.9977948233,
+ 0.006735492132
+ ]
+ },
+ {
+ "learn": [
+ 0.9988568324,
+ 0.003990364771
+ ],
+ "iteration": 42800,
+ "passed_time": 1308.248421,
+ "remaining_time": 220.0434658,
+ "test": [
+ 0.9977877667,
+ 0.006732640908
+ ]
+ },
+ {
+ "learn": [
+ 0.9988599686,
+ 0.003986698269
+ ],
+ "iteration": 42900,
+ "passed_time": 1312.590612,
+ "remaining_time": 217.1996166,
+ "test": [
+ 0.9977877667,
+ 0.006731626182
+ ]
+ },
+ {
+ "learn": [
+ 0.9988603607,
+ 0.003983652358
+ ],
+ "iteration": 43000,
+ "passed_time": 1315.272531,
+ "remaining_time": 214.0785667,
+ "test": [
+ 0.9978018799,
+ 0.006730543836
+ ]
+ },
+ {
+ "learn": [
+ 0.9988599686,
+ 0.003979448342
+ ],
+ "iteration": 43100,
+ "passed_time": 1317.847517,
+ "remaining_time": 210.9424381,
+ "test": [
+ 0.9977948233,
+ 0.006729359415
+ ]
+ },
+ {
+ "learn": [
+ 0.998864673,
+ 0.003975558259
+ ],
+ "iteration": 43200,
+ "passed_time": 1320.433573,
+ "remaining_time": 207.8106494,
+ "test": [
+ 0.9977948233,
+ 0.006728259842
+ ]
+ },
+ {
+ "learn": [
+ 0.9988658491,
+ 0.00397228111
+ ],
+ "iteration": 43300,
+ "passed_time": 1323.469562,
+ "remaining_time": 204.7509894,
+ "test": [
+ 0.9977948233,
+ 0.006726381565
+ ]
+ },
+ {
+ "learn": [
+ 0.9988650651,
+ 0.003969697675
+ ],
+ "iteration": 43400,
+ "passed_time": 1327.353939,
+ "remaining_time": 201.8204337,
+ "test": [
+ 0.9977983516,
+ 0.006725212649
+ ]
+ },
+ {
+ "learn": [
+ 0.9988650651,
+ 0.003966744029
+ ],
+ "iteration": 43500,
+ "passed_time": 1329.945955,
+ "remaining_time": 198.6924154,
+ "test": [
+ 0.9977948233,
+ 0.006724182418
+ ]
+ },
+ {
+ "learn": [
+ 0.9988685934,
+ 0.00396365256
+ ],
+ "iteration": 43600,
+ "passed_time": 1332.539265,
+ "remaining_time": 195.5670457,
+ "test": [
+ 0.9977877667,
+ 0.006723086721
+ ]
+ },
+ {
+ "learn": [
+ 0.9988685934,
+ 0.003960277403
+ ],
+ "iteration": 43700,
+ "passed_time": 1335.142542,
+ "remaining_time": 192.4455475,
+ "test": [
+ 0.9977877667,
+ 0.006721101201
+ ]
+ },
+ {
+ "learn": [
+ 0.9988701615,
+ 0.003957505991
+ ],
+ "iteration": 43800,
+ "passed_time": 1339.636207,
+ "remaining_time": 189.5939555,
+ "test": [
+ 0.9977948233,
+ 0.006719510631
+ ]
+ },
+ {
+ "learn": [
+ 0.9988717296,
+ 0.003953359785
+ ],
+ "iteration": 43900,
+ "passed_time": 1342.244027,
+ "remaining_time": 186.4728894,
+ "test": [
+ 0.9977948233,
+ 0.006717556121
+ ]
+ },
+ {
+ "learn": [
+ 0.9988709455,
+ 0.003949648873
+ ],
+ "iteration": 44000,
+ "passed_time": 1344.868943,
+ "remaining_time": 183.3564871,
+ "test": [
+ 0.997791295,
+ 0.00671487373
+ ]
+ },
+ {
+ "learn": [
+ 0.9988717296,
+ 0.003946378615
+ ],
+ "iteration": 44100,
+ "passed_time": 1347.460609,
+ "remaining_time": 180.2378661,
+ "test": [
+ 0.9977983516,
+ 0.006712940324
+ ]
+ },
+ {
+ "learn": [
+ 0.9988732977,
+ 0.003941140536
+ ],
+ "iteration": 44200,
+ "passed_time": 1351.683115,
+ "remaining_time": 177.3355894,
+ "test": [
+ 0.9978018799,
+ 0.006710965571
+ ]
+ },
+ {
+ "learn": [
+ 0.9988752579,
+ 0.003937777247
+ ],
+ "iteration": 44300,
+ "passed_time": 1354.516048,
+ "remaining_time": 174.2485939,
+ "test": [
+ 0.9977983516,
+ 0.00671039791
+ ]
+ },
+ {
+ "learn": [
+ 0.9988752579,
+ 0.003935510042
+ ],
+ "iteration": 44400,
+ "passed_time": 1357.106526,
+ "remaining_time": 171.1321691,
+ "test": [
+ 0.9978018799,
+ 0.006708939565
+ ]
+ },
+ {
+ "learn": [
+ 0.998876826,
+ 0.003933374918
+ ],
+ "iteration": 44500,
+ "passed_time": 1359.65811,
+ "remaining_time": 168.0133019,
+ "test": [
+ 0.9978018799,
+ 0.006708756949
+ ]
+ },
+ {
+ "learn": [
+ 0.9988752579,
+ 0.003929696165
+ ],
+ "iteration": 44600,
+ "passed_time": 1362.445828,
+ "remaining_time": 164.9255628,
+ "test": [
+ 0.9978054082,
+ 0.006707221078
+ ]
+ },
+ {
+ "learn": [
+ 0.9988776101,
+ 0.003926842441
+ ],
+ "iteration": 44700,
+ "passed_time": 1366.629765,
+ "remaining_time": 162.0046783,
+ "test": [
+ 0.9978054082,
+ 0.006705678316
+ ]
+ },
+ {
+ "learn": [
+ 0.9988807464,
+ 0.00392350978
+ ],
+ "iteration": 44800,
+ "passed_time": 1369.190302,
+ "remaining_time": 158.8897654,
+ "test": [
+ 0.9978054082,
+ 0.006704477097
+ ]
+ },
+ {
+ "learn": [
+ 0.9988787862,
+ 0.003920705061
+ ],
+ "iteration": 44900,
+ "passed_time": 1371.759843,
+ "remaining_time": 155.7783444,
+ "test": [
+ 0.9978089364,
+ 0.00670317811
+ ]
+ },
+ {
+ "learn": [
+ 0.9988815304,
+ 0.003916867427
+ ],
+ "iteration": 45000,
+ "passed_time": 1374.391907,
+ "remaining_time": 152.676277,
+ "test": [
+ 0.9978018799,
+ 0.006702108255
+ ]
+ },
+ {
+ "learn": [
+ 0.9988807464,
+ 0.003913471213
+ ],
+ "iteration": 45100,
+ "passed_time": 1378.762987,
+ "remaining_time": 149.7651909,
+ "test": [
+ 0.9977983516,
+ 0.0067014579
+ ]
+ },
+ {
+ "learn": [
+ 0.9988811384,
+ 0.003910195979
+ ],
+ "iteration": 45200,
+ "passed_time": 1381.345095,
+ "remaining_time": 146.6577091,
+ "test": [
+ 0.9977983516,
+ 0.006698679894
+ ]
+ },
+ {
+ "learn": [
+ 0.9988815304,
+ 0.003906685677
+ ],
+ "iteration": 45300,
+ "passed_time": 1383.940495,
+ "remaining_time": 143.5539257,
+ "test": [
+ 0.9978018799,
+ 0.006697566108
+ ]
+ },
+ {
+ "learn": [
+ 0.9988823145,
+ 0.003903893592
+ ],
+ "iteration": 45400,
+ "passed_time": 1386.530592,
+ "remaining_time": 140.4518445,
+ "test": [
+ 0.9978054082,
+ 0.006695904042
+ ]
+ },
+ {
+ "learn": [
+ 0.9988823145,
+ 0.003900756947
+ ],
+ "iteration": 45500,
+ "passed_time": 1389.828125,
+ "remaining_time": 137.4219629,
+ "test": [
+ 0.9978089364,
+ 0.006694179094
+ ]
+ },
+ {
+ "learn": [
+ 0.9988823145,
+ 0.003897505831
+ ],
+ "iteration": 45600,
+ "passed_time": 1393.52941,
+ "remaining_time": 134.4298562,
+ "test": [
+ 0.9978124647,
+ 0.006692517459
+ ]
+ },
+ {
+ "learn": [
+ 0.9988862348,
+ 0.003894835873
+ ],
+ "iteration": 45700,
+ "passed_time": 1396.125176,
+ "remaining_time": 131.3306521,
+ "test": [
+ 0.9978089364,
+ 0.00669050179
+ ]
+ },
+ {
+ "learn": [
+ 0.9988846667,
+ 0.003891547622
+ ],
+ "iteration": 45800,
+ "passed_time": 1398.724907,
+ "remaining_time": 128.2340098,
+ "test": [
+ 0.9978089364,
+ 0.006688701901
+ ]
+ },
+ {
+ "learn": [
+ 0.9988870189,
+ 0.003888690836
+ ],
+ "iteration": 45900,
+ "passed_time": 1401.259039,
+ "remaining_time": 125.1336747,
+ "test": [
+ 0.9978089364,
+ 0.006687879697
+ ]
+ },
+ {
+ "learn": [
+ 0.998888195,
+ 0.003884678625
+ ],
+ "iteration": 46000,
+ "passed_time": 1405.721819,
+ "remaining_time": 122.2034641,
+ "test": [
+ 0.9978089364,
+ 0.006685325224
+ ]
+ },
+ {
+ "learn": [
+ 0.9988901552,
+ 0.003882055374
+ ],
+ "iteration": 46100,
+ "passed_time": 1408.332217,
+ "remaining_time": 119.1099393,
+ "test": [
+ 0.9978089364,
+ 0.006683340565
+ ]
+ },
+ {
+ "learn": [
+ 0.9988905472,
+ 0.003879438632
+ ],
+ "iteration": 46200,
+ "passed_time": 1410.934686,
+ "remaining_time": 116.017854,
+ "test": [
+ 0.9978089364,
+ 0.006682908574
+ ]
+ },
+ {
+ "learn": [
+ 0.9988909392,
+ 0.003876978473
+ ],
+ "iteration": 46300,
+ "passed_time": 1413.552727,
+ "remaining_time": 112.9291276,
+ "test": [
+ 0.9978124647,
+ 0.006682136762
+ ]
+ },
+ {
+ "learn": [
+ 0.9988905472,
+ 0.003873921842
+ ],
+ "iteration": 46400,
+ "passed_time": 1417.793507,
+ "remaining_time": 109.9682945,
+ "test": [
+ 0.9978089364,
+ 0.006681626384
+ ]
+ },
+ {
+ "learn": [
+ 0.9988925074,
+ 0.003871478529
+ ],
+ "iteration": 46500,
+ "passed_time": 1420.657931,
+ "remaining_time": 106.8983914,
+ "test": [
+ 0.9978124647,
+ 0.006679820465
+ ]
+ },
+ {
+ "learn": [
+ 0.9988940755,
+ 0.003868542494
+ ],
+ "iteration": 46600,
+ "passed_time": 1423.221651,
+ "remaining_time": 103.8074374,
+ "test": [
+ 0.997815993,
+ 0.006678145048
+ ]
+ },
+ {
+ "learn": [
+ 0.9988948595,
+ 0.003865434179
+ ],
+ "iteration": 46700,
+ "passed_time": 1425.818444,
+ "remaining_time": 100.7210776,
+ "test": [
+ 0.997815993,
+ 0.006677094574
+ ]
+ },
+ {
+ "learn": [
+ 0.9988987799,
+ 0.003861879851
+ ],
+ "iteration": 46800,
+ "passed_time": 1428.797546,
+ "remaining_time": 97.66294203,
+ "test": [
+ 0.9978195213,
+ 0.0066758098
+ ]
+ },
+ {
+ "learn": [
+ 0.998899956,
+ 0.003858507373
+ ],
+ "iteration": 46900,
+ "passed_time": 1432.844876,
+ "remaining_time": 94.67572695,
+ "test": [
+ 0.997815993,
+ 0.006674056857
+ ]
+ },
+ {
+ "learn": [
+ 0.9989011321,
+ 0.003855467205
+ ],
+ "iteration": 47000,
+ "passed_time": 1435.437617,
+ "remaining_time": 91.59118768,
+ "test": [
+ 0.997815993,
+ 0.00667498372
+ ]
+ },
+ {
+ "learn": [
+ 0.99890074,
+ 0.003853016617
+ ],
+ "iteration": 47100,
+ "passed_time": 1438.014329,
+ "remaining_time": 88.50775017,
+ "test": [
+ 0.9978089364,
+ 0.006673586103
+ ]
+ },
+ {
+ "learn": [
+ 0.9989019161,
+ 0.003850643364
+ ],
+ "iteration": 47200,
+ "passed_time": 1440.587964,
+ "remaining_time": 85.42627723,
+ "test": [
+ 0.997815993,
+ 0.00667285047
+ ]
+ },
+ {
+ "learn": [
+ 0.9989050524,
+ 0.003847227625
+ ],
+ "iteration": 47300,
+ "passed_time": 1444.898559,
+ "remaining_time": 82.44606269,
+ "test": [
+ 0.997815993,
+ 0.006670594902
+ ]
+ },
+ {
+ "learn": [
+ 0.9989050524,
+ 0.003844553839
+ ],
+ "iteration": 47400,
+ "passed_time": 1447.454684,
+ "remaining_time": 79.3640371,
+ "test": [
+ 0.9978195213,
+ 0.006671019571
+ ]
+ },
+ {
+ "learn": [
+ 0.9989074046,
+ 0.003841844065
+ ],
+ "iteration": 47500,
+ "passed_time": 1450.026776,
+ "remaining_time": 76.28506587,
+ "test": [
+ 0.9978195213,
+ 0.006670503163
+ ]
+ },
+ {
+ "learn": [
+ 0.9989066205,
+ 0.003839097539
+ ],
+ "iteration": 47600,
+ "passed_time": 1452.604251,
+ "remaining_time": 73.20849556,
+ "test": [
+ 0.9978089364,
+ 0.006669258875
+ ]
+ },
+ {
+ "learn": [
+ 0.9989074046,
+ 0.003835942134
+ ],
+ "iteration": 47700,
+ "passed_time": 1456.124141,
+ "remaining_time": 70.17943858,
+ "test": [
+ 0.9978195213,
+ 0.006668943603
+ ]
+ },
+ {
+ "learn": [
+ 0.9989085807,
+ 0.003833868265
+ ],
+ "iteration": 47800,
+ "passed_time": 1459.510306,
+ "remaining_time": 67.14217619,
+ "test": [
+ 0.9978124647,
+ 0.006668810518
+ ]
+ },
+ {
+ "learn": [
+ 0.9989085807,
+ 0.003830147782
+ ],
+ "iteration": 47900,
+ "passed_time": 1462.087459,
+ "remaining_time": 64.06800643,
+ "test": [
+ 0.9978265778,
+ 0.006666849116
+ ]
+ },
+ {
+ "learn": [
+ 0.9989097568,
+ 0.003826989698
+ ],
+ "iteration": 48000,
+ "passed_time": 1464.683721,
+ "remaining_time": 60.99670337,
+ "test": [
+ 0.9978265778,
+ 0.006666480438
+ ]
+ },
+ {
+ "learn": [
+ 0.998911717,
+ 0.00382436415
+ ],
+ "iteration": 48100,
+ "passed_time": 1467.26682,
+ "remaining_time": 57.92685579,
+ "test": [
+ 0.9978301061,
+ 0.006665327028
+ ]
+ },
+ {
+ "learn": [
+ 0.9989128931,
+ 0.003821965246
+ ],
+ "iteration": 48200,
+ "passed_time": 1471.570291,
+ "remaining_time": 54.92323714,
+ "test": [
+ 0.9978301061,
+ 0.006664147344
+ ]
+ },
+ {
+ "learn": [
+ 0.9989152453,
+ 0.003819492453
+ ],
+ "iteration": 48300,
+ "passed_time": 1474.175454,
+ "remaining_time": 51.85449775,
+ "test": [
+ 0.9978336344,
+ 0.006662886689
+ ]
+ },
+ {
+ "learn": [
+ 0.9989152453,
+ 0.00381638031
+ ],
+ "iteration": 48400,
+ "passed_time": 1476.763114,
+ "remaining_time": 48.7870957,
+ "test": [
+ 0.9978301061,
+ 0.006661547217
+ ]
+ },
+ {
+ "learn": [
+ 0.9989148532,
+ 0.00381374634
+ ],
+ "iteration": 48500,
+ "passed_time": 1479.31967,
+ "remaining_time": 45.72071061,
+ "test": [
+ 0.9978301061,
+ 0.006660188363
+ ]
+ },
+ {
+ "learn": [
+ 0.9989172054,
+ 0.003811292306
+ ],
+ "iteration": 48600,
+ "passed_time": 1483.399081,
+ "remaining_time": 42.70025956,
+ "test": [
+ 0.9978230496,
+ 0.006659431625
+ ]
+ },
+ {
+ "learn": [
+ 0.9989179895,
+ 0.003808645319
+ ],
+ "iteration": 48700,
+ "passed_time": 1486.246912,
+ "remaining_time": 39.64260978,
+ "test": [
+ 0.9978301061,
+ 0.006658496579
+ ]
+ },
+ {
+ "learn": [
+ 0.9989183815,
+ 0.003805868165
+ ],
+ "iteration": 48800,
+ "passed_time": 1488.808859,
+ "remaining_time": 36.57879596,
+ "test": [
+ 0.9978301061,
+ 0.006658115841
+ ]
+ },
+ {
+ "learn": [
+ 0.9989187735,
+ 0.003802871641
+ ],
+ "iteration": 48900,
+ "passed_time": 1491.423346,
+ "remaining_time": 33.51821551,
+ "test": [
+ 0.9978230496,
+ 0.006656825899
+ ]
+ },
+ {
+ "learn": [
+ 0.9989191656,
+ 0.003800733071
+ ],
+ "iteration": 49000,
+ "passed_time": 1494.132869,
+ "remaining_time": 30.46139336,
+ "test": [
+ 0.9978230496,
+ 0.006655842614
+ ]
+ },
+ {
+ "learn": [
+ 0.9989195576,
+ 0.003797334943
+ ],
+ "iteration": 49100,
+ "passed_time": 1498.203188,
+ "remaining_time": 27.43090092,
+ "test": [
+ 0.9978265778,
+ 0.006655115595
+ ]
+ },
+ {
+ "learn": [
+ 0.9989211257,
+ 0.003794982364
+ ],
+ "iteration": 49200,
+ "passed_time": 1500.793259,
+ "remaining_time": 24.37214312,
+ "test": [
+ 0.9978230496,
+ 0.006653232581
+ ]
+ },
+ {
+ "learn": [
+ 0.9989219098,
+ 0.003791981245
+ ],
+ "iteration": 49300,
+ "passed_time": 1503.41015,
+ "remaining_time": 21.31566692,
+ "test": [
+ 0.9978265778,
+ 0.006651706185
+ ]
+ },
+ {
+ "learn": [
+ 0.9989226939,
+ 0.003789346509
+ ],
+ "iteration": 49400,
+ "passed_time": 1505.989094,
+ "remaining_time": 18.26051026,
+ "test": [
+ 0.9978301061,
+ 0.006650407198
+ ]
+ },
+ {
+ "learn": [
+ 0.998924654,
+ 0.003786671958
+ ],
+ "iteration": 49500,
+ "passed_time": 1510.374463,
+ "remaining_time": 15.22548751,
+ "test": [
+ 0.9978336344,
+ 0.006649796468
+ ]
+ },
+ {
+ "learn": [
+ 0.998924654,
+ 0.003783342742
+ ],
+ "iteration": 49600,
+ "passed_time": 1512.982167,
+ "remaining_time": 12.17072004,
+ "test": [
+ 0.9978371627,
+ 0.006648522461
+ ]
+ },
+ {
+ "learn": [
+ 0.9989254381,
+ 0.003780310996
+ ],
+ "iteration": 49700,
+ "passed_time": 1515.603691,
+ "remaining_time": 9.117834723,
+ "test": [
+ 0.9978371627,
+ 0.00664809607
+ ]
+ },
+ {
+ "learn": [
+ 0.9989277903,
+ 0.00377780145
+ ],
+ "iteration": 49800,
+ "passed_time": 1518.203242,
+ "remaining_time": 6.066593947,
+ "test": [
+ 0.9978371627,
+ 0.006646685532
+ ]
+ },
+ {
+ "learn": [
+ 0.9989289664,
+ 0.003775486772
+ ],
+ "iteration": 49900,
+ "passed_time": 1521.928634,
+ "remaining_time": 3.019397101,
+ "test": [
+ 0.9978371627,
+ 0.006645362857
+ ]
+ },
+ {
+ "learn": [
+ 0.9989289664,
+ 0.003772818345
+ ],
+ "iteration": 49999,
+ "passed_time": 1525.172377,
+ "remaining_time": 0,
+ "test": [
+ 0.9978371627,
+ 0.006644930866
+ ]
+ }
+ ],
+ "meta": {
+ "test_sets": [
+ "test"
+ ],
+ "test_metrics": [
+ {
+ "best_value": "Max",
+ "name": "Accuracy"
+ },
+ {
+ "best_value": "Min",
+ "name": "MultiClass"
+ }
+ ],
+ "learn_metrics": [
+ {
+ "best_value": "Max",
+ "name": "Accuracy"
+ },
+ {
+ "best_value": "Min",
+ "name": "MultiClass"
+ }
+ ],
+ "launch_mode": "Train",
+ "parameters": "",
+ "iteration_count": 50000,
+ "learn_sets": [
+ "learn"
+ ],
+ "name": "experiment"
+ }
+ }
+ }
+ }
+ },
+ "layout": "IPY_MODEL_0edddcd5e2b24238a4aff7b33a809a60"
+ }
+ }
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
\ No newline at end of file