add final code
Browse files- .gitattributes +1 -0
- README.md +1 -1
- app.py +91 -0
- breeds.txt +120 -0
- convnext_model.pth +3 -0
- examples/example1.jpg +0 -0
- examples/example2.jpg +0 -0
- examples/example3.jpg +0 -0
- labels.csv +0 -0
- model.py +55 -0
- requirements.txt +4 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
convnext_model.pth filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: DogVision
|
3 |
-
emoji:
|
4 |
colorFrom: gray
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
title: DogVision
|
3 |
+
emoji: 🐶
|
4 |
colorFrom: gray
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### 1. Imports and class names setup ###
|
2 |
+
from model import create_model
|
3 |
+
import pandas as pd
|
4 |
+
import torch
|
5 |
+
from typing import Tuple, Dict
|
6 |
+
from timeit import default_timer as timer
|
7 |
+
import gradio as gr
|
8 |
+
import os
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
### 1. Create a Dictionary for Dog Breeds
|
12 |
+
labels_csv = pd.read_csv('./labels.csv')
|
13 |
+
labels = labels_csv['breed']
|
14 |
+
labels = np.array(labels)
|
15 |
+
unique_labels = np.unique(labels)
|
16 |
+
|
17 |
+
### 2. Model and transforms preparation ###
|
18 |
+
model, model_transforms = create_model(num_classes=len(unique_labels))
|
19 |
+
model = torch.compile(model)
|
20 |
+
|
21 |
+
|
22 |
+
# Load save weights
|
23 |
+
model.load_state_dict(torch.load(f='./convnext_model.pth', map_location='cpu',weights_only=True))
|
24 |
+
|
25 |
+
# 3. Predict Function
|
26 |
+
|
27 |
+
def predict(img) -> Tuple[Dict[str, float], str]:
|
28 |
+
"""
|
29 |
+
Predicts the class probabilities for a given image using a pre-trained model.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
img: A PIL image to be predicted.
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
A tuple containing:
|
36 |
+
- A formatted string displaying class labels and their respective probabilities.
|
37 |
+
- The time taken for inference in seconds as a string.
|
38 |
+
"""
|
39 |
+
# Start a timer
|
40 |
+
start_time = timer()
|
41 |
+
|
42 |
+
# Put the model into evaluation mode and disable gradient computation
|
43 |
+
model.eval()
|
44 |
+
with torch.inference_mode():
|
45 |
+
|
46 |
+
# Transform the input image for use with the model
|
47 |
+
img = model_transforms(img).unsqueeze(dim=0)
|
48 |
+
|
49 |
+
# Pass transformed image through the model
|
50 |
+
pred_logit = model(img)
|
51 |
+
|
52 |
+
# Turn prediction logits into probabilities
|
53 |
+
pred_prob = torch.softmax(pred_logit, dim=1)
|
54 |
+
|
55 |
+
pred_label = torch.argmax(pred_prob, dim=1)
|
56 |
+
|
57 |
+
# Map probabilities to class labels
|
58 |
+
prediction = unique_labels[pred_label]
|
59 |
+
probabilities = {unique_labels[i]: pred_prob[0, i].item() for i in range(len(unique_labels))}
|
60 |
+
|
61 |
+
# Calculate the time taken
|
62 |
+
end_time = timer()
|
63 |
+
inference_time = end_time - start_time
|
64 |
+
|
65 |
+
# Return predictions as a dictionary and inference time
|
66 |
+
return probabilities, f"{inference_time:.4f} seconds"
|
67 |
+
### 4. Gradio app ###
|
68 |
+
|
69 |
+
|
70 |
+
# Create title, description and article
|
71 |
+
title = "Dogvision 🐶"
|
72 |
+
description = "A [ConvNeXt Tiny](https://pytorch.org/vision/stable/models/generated/torchvision.models.convnext_tiny.html#torchvision.models.convnext_tiny) Computer Vision Model To Classify 120 Dog Breeds 🐩 Ranging fro A Labrador 🐕 to A German Shepherd! 🐕🦺"
|
73 |
+
article = "Created with 🤎 (and a mixture of mathematics, statistics, and tons of calculations 👩🏽🔬) by Arpit Vaghela [GitHub](https://github.com/magnifiques)"
|
74 |
+
|
75 |
+
# Create example list
|
76 |
+
example_list = [["./examples/" + example] for example in os.listdir("examples")]
|
77 |
+
|
78 |
+
demo = gr.Interface(fn=predict,
|
79 |
+
inputs=gr.Image(type='pil'),
|
80 |
+
outputs=[
|
81 |
+
gr.Label(num_top_classes=3, label="Top Predictions"), # Display top predictions with probabilities
|
82 |
+
gr.Textbox(label="Prediction Time (s)") # Display inference time
|
83 |
+
],
|
84 |
+
examples=example_list,
|
85 |
+
title=title,
|
86 |
+
description=description,
|
87 |
+
article=article)
|
88 |
+
|
89 |
+
# Launch the demo!
|
90 |
+
demo.launch(debug=False, # print errors locally?
|
91 |
+
share=True) # generate a publicly shareable URL
|
breeds.txt
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
boston_bull
|
2 |
+
dingo
|
3 |
+
pekinese
|
4 |
+
bluetick
|
5 |
+
golden_retriever
|
6 |
+
bedlington_terrier
|
7 |
+
borzoi
|
8 |
+
basenji
|
9 |
+
scottish_deerhound
|
10 |
+
shetland_sheepdog
|
11 |
+
walker_hound
|
12 |
+
maltese_dog
|
13 |
+
norfolk_terrier
|
14 |
+
african_hunting_dog
|
15 |
+
wire-haired_fox_terrier
|
16 |
+
redbone
|
17 |
+
lakeland_terrier
|
18 |
+
boxer
|
19 |
+
doberman
|
20 |
+
otterhound
|
21 |
+
standard_schnauzer
|
22 |
+
irish_water_spaniel
|
23 |
+
black-and-tan_coonhound
|
24 |
+
cairn
|
25 |
+
affenpinscher
|
26 |
+
labrador_retriever
|
27 |
+
ibizan_hound
|
28 |
+
english_setter
|
29 |
+
weimaraner
|
30 |
+
giant_schnauzer
|
31 |
+
groenendael
|
32 |
+
dhole
|
33 |
+
toy_poodle
|
34 |
+
border_terrier
|
35 |
+
tibetan_terrier
|
36 |
+
norwegian_elkhound
|
37 |
+
shih-tzu
|
38 |
+
irish_terrier
|
39 |
+
kuvasz
|
40 |
+
german_shepherd
|
41 |
+
greater_swiss_mountain_dog
|
42 |
+
basset
|
43 |
+
australian_terrier
|
44 |
+
schipperke
|
45 |
+
rhodesian_ridgeback
|
46 |
+
irish_setter
|
47 |
+
appenzeller
|
48 |
+
bloodhound
|
49 |
+
samoyed
|
50 |
+
miniature_schnauzer
|
51 |
+
brittany_spaniel
|
52 |
+
kelpie
|
53 |
+
papillon
|
54 |
+
border_collie
|
55 |
+
entlebucher
|
56 |
+
collie
|
57 |
+
malamute
|
58 |
+
welsh_springer_spaniel
|
59 |
+
chihuahua
|
60 |
+
saluki
|
61 |
+
pug
|
62 |
+
malinois
|
63 |
+
komondor
|
64 |
+
airedale
|
65 |
+
leonberg
|
66 |
+
mexican_hairless
|
67 |
+
bull_mastiff
|
68 |
+
bernese_mountain_dog
|
69 |
+
american_staffordshire_terrier
|
70 |
+
lhasa
|
71 |
+
cardigan
|
72 |
+
italian_greyhound
|
73 |
+
clumber
|
74 |
+
scotch_terrier
|
75 |
+
afghan_hound
|
76 |
+
old_english_sheepdog
|
77 |
+
saint_bernard
|
78 |
+
miniature_pinscher
|
79 |
+
eskimo_dog
|
80 |
+
irish_wolfhound
|
81 |
+
brabancon_griffon
|
82 |
+
toy_terrier
|
83 |
+
chow
|
84 |
+
flat-coated_retriever
|
85 |
+
norwich_terrier
|
86 |
+
soft-coated_wheaten_terrier
|
87 |
+
staffordshire_bullterrier
|
88 |
+
english_foxhound
|
89 |
+
gordon_setter
|
90 |
+
siberian_husky
|
91 |
+
newfoundland
|
92 |
+
briard
|
93 |
+
chesapeake_bay_retriever
|
94 |
+
dandie_dinmont
|
95 |
+
great_pyrenees
|
96 |
+
beagle
|
97 |
+
vizsla
|
98 |
+
west_highland_white_terrier
|
99 |
+
kerry_blue_terrier
|
100 |
+
whippet
|
101 |
+
sealyham_terrier
|
102 |
+
standard_poodle
|
103 |
+
keeshond
|
104 |
+
japanese_spaniel
|
105 |
+
miniature_poodle
|
106 |
+
pomeranian
|
107 |
+
curly-coated_retriever
|
108 |
+
yorkshire_terrier
|
109 |
+
pembroke
|
110 |
+
great_dane
|
111 |
+
blenheim_spaniel
|
112 |
+
silky_terrier
|
113 |
+
sussex_spaniel
|
114 |
+
german_short-haired_pointer
|
115 |
+
french_bulldog
|
116 |
+
bouvier_des_flandres
|
117 |
+
tibetan_mastiff
|
118 |
+
english_springer
|
119 |
+
cocker_spaniel
|
120 |
+
rottweiler
|
convnext_model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f99258fdd9b2f3a2e137dff009a5b1bc3aaea5e2b349f644fd3d03e5ec8c27c
|
3 |
+
size 111721116
|
examples/example1.jpg
ADDED
![]() |
examples/example2.jpg
ADDED
![]() |
examples/example3.jpg
ADDED
![]() |
labels.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torchvision
|
4 |
+
from torchvision import transforms
|
5 |
+
|
6 |
+
# Custom transformation to handle palette images
|
7 |
+
def convert_to_rgba(image):
|
8 |
+
# Check if the image mode is 'P' (palette mode)
|
9 |
+
if image.mode == 'P':
|
10 |
+
image = image.convert('RGBA')
|
11 |
+
return image
|
12 |
+
|
13 |
+
def create_model(num_classes: int = 120, seed: int = 42):
|
14 |
+
|
15 |
+
|
16 |
+
# 1. Download the default weights
|
17 |
+
weights = torchvision.models.ConvNeXt_Tiny_Weights.IMAGENET1K_V1
|
18 |
+
|
19 |
+
# 2. Setup transforms
|
20 |
+
default_transforms = weights.transforms()
|
21 |
+
|
22 |
+
custom_transforms = transforms.Compose([
|
23 |
+
# transforms.RandomHorizontalFlip(p=0.5), # Randomly flip images horizontally
|
24 |
+
# transforms.Lambda(convert_to_rgba), # Apply RGBA conversion if necessary
|
25 |
+
# transforms.RandomRotation(degrees=10), # Randomly rotate images by up to 10 degrees
|
26 |
+
# transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1), # Color jitter
|
27 |
+
])
|
28 |
+
|
29 |
+
# 3. Combine custom and ViT's default transforms
|
30 |
+
combined_transforms = transforms.Compose([
|
31 |
+
custom_transforms, # First, apply your custom augmentations
|
32 |
+
transforms.Resize((224, 224)), # Resize to ConvNext's input size if needed (ConvNext expects 224x224)
|
33 |
+
transforms.ToTensor(), # Convert image to Tensor
|
34 |
+
default_transforms, # Apply default normalization (mean, std)
|
35 |
+
])
|
36 |
+
|
37 |
+
# 4. Create a model and apply the default weights
|
38 |
+
model = torchvision.models.convnext_tiny(weights=weights)
|
39 |
+
|
40 |
+
# 5. Freeze the base layers in the model (this will stop all layers from training)
|
41 |
+
for parameters in model.parameters():
|
42 |
+
parameters.requires_grad = False
|
43 |
+
|
44 |
+
# 6. Set seeds for reproducibility
|
45 |
+
torch.manual_seed(seed)
|
46 |
+
|
47 |
+
# 7. Modify the number of output layers (add a dropout layer for regularization)
|
48 |
+
model.classifier = nn.Sequential(
|
49 |
+
nn.LayerNorm([768, 1, 1], eps=1e-06, elementwise_affine=True), # Apply LayerNorm on the channel dimension (768)
|
50 |
+
nn.Flatten(start_dim=1), # Flatten the tensor from dimension 1 onwards (batch size remains intact)
|
51 |
+
nn.Linear(in_features=768, out_features=num_classes, bias=True)
|
52 |
+
)
|
53 |
+
|
54 |
+
|
55 |
+
return model, combined_transforms
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.4.0
|
2 |
+
torchvision==0.19.0
|
3 |
+
gradio==4.44.0
|
4 |
+
triton==3.1.0
|