varun500 commited on
Commit
d56a4e8
·
verified ·
1 Parent(s): f6d4817

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +110 -0
app.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import faiss
2
+ import numpy as np
3
+ from FlagEmbedding import FlagModel
4
+ from flask import Flask, request, jsonify
5
+ from datasets import load_dataset
6
+ import gradio as gr
7
+ import os
8
+ import time
9
+ from functools import lru_cache
10
+
11
+ # Initialize components
12
+ app = Flask(__name__)
13
+ model = None
14
+ index = None
15
+ corpus = None
16
+
17
+ def initialize_components():
18
+ global model, index, corpus
19
+
20
+ # Load model with safety checks
21
+ if model is None:
22
+ model = FlagModel(
23
+ "BAAI/bge-large-en-v1.5",
24
+ query_instruction_for_retrieval="Represent this sentence for searching relevant passages:",
25
+ use_fp16=True
26
+ )
27
+
28
+ # Load corpus from Hugging Face dataset
29
+ if corpus is None:
30
+ dataset = load_dataset("awinml/medrag_corpus_sampled", split='train')
31
+ corpus = [f"{row['id']}\t{row['contents']}" for row in dataset]
32
+
33
+ # Create FAISS index in memory
34
+ if index is None:
35
+ embeddings = model.encode([doc.split('\t', 1)[1] for doc in corpus])
36
+ dimension = embeddings.shape[1]
37
+ index = faiss.IndexFlatIP(dimension)
38
+ index.add(embeddings.astype('float32'))
39
+
40
+ @app.route("/retrieve", methods=["POST"])
41
+ def retrieve():
42
+ start_time = time.time()
43
+
44
+ # Validate request
45
+ data = request.json
46
+ if not data or "queries" not in data:
47
+ return jsonify({"error": "Missing 'queries' parameter"}), 400
48
+
49
+ # Initialize components if needed
50
+ initialize_components()
51
+
52
+ # Process queries
53
+ queries = data["queries"]
54
+ topk = data.get("topk", 3)
55
+ return_scores = data.get("return_scores", False)
56
+
57
+ # Batch processing
58
+ query_embeddings = model.encode_queries(queries)
59
+ scores, indices = index.search(query_embeddings.astype('float32'), topk)
60
+
61
+ # Format results
62
+ results = []
63
+ for i, query in enumerate(queries):
64
+ query_results = []
65
+ for j in range(topk):
66
+ doc_idx = indices[i][j]
67
+ doc = corpus[doc_idx]
68
+ doc_id, content = doc.split('\t', 1)
69
+ result = {
70
+ "document": {
71
+ "id": doc_id,
72
+ "contents": content
73
+ },
74
+ "score": float(scores[i][j])
75
+ }
76
+ query_results.append(result)
77
+ results.append(query_results)
78
+
79
+ return jsonify({
80
+ "result": results,
81
+ "time": f"{time.time() - start_time:.2f}s"
82
+ })
83
+
84
+ # Gradio UI for testing
85
+ def gradio_interface(query, topk):
86
+ response = requests.post(
87
+ "http://localhost:7860/retrieve",
88
+ json={"queries": [query], "topk": topk}
89
+ )
90
+ return response.json()["result"][0]
91
+
92
+ # Start server
93
+ if __name__ == "__main__":
94
+ # First-time initialization
95
+ initialize_components()
96
+
97
+ # Create Gradio interface
98
+ iface = gr.Interface(
99
+ fn=gradio_interface,
100
+ inputs=[
101
+ gr.Textbox(label="Medical Query", placeholder="Enter your medical question..."),
102
+ gr.Slider(1, 10, value=3, label="Top Results")
103
+ ],
104
+ outputs=gr.JSON(label="Retrieval Results"),
105
+ title="Medical Retrieval System",
106
+ description="Search across medical literature using AI-powered semantic search"
107
+ )
108
+
109
+ # Run both Flask and Gradio
110
+ iface.launch(server_name="0.0.0.0", server_port=7860, share=True)