Spaces:
Sleeping
Sleeping
File size: 1,137 Bytes
1e0788e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import streamlit as st
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "deepset/roberta-base-squad2"
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def get_answer(context, question):
nlp = pipeline('question-answering', model=model, tokenizer=tokenizer)
QA_input = {'question': question, 'context': context}
res = nlp(QA_input)
answer = res['answer']
return answer
def main():
st.title("Question Answering App")
st.markdown("Enter the context and question, then click on 'Get Answer' to retrieve the answer.")
context = st.text_area("Context", "Enter the context here...")
question = st.text_input("Question", "Enter the question here...")
if st.button("Get Answer"):
if context.strip() == "" or question.strip() == "":
st.warning("Please enter the context and question.")
else:
answer = get_answer(context, question)
st.success(f"Answer: {answer}")
if __name__ == "__main__":
main()
|