Spaces:
Sleeping
Sleeping
Delete pages/answers_2.py
Browse files- pages/answers_2.py +0 -45
pages/answers_2.py
DELETED
@@ -1,45 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
3 |
-
from streamlit_extras.let_it_rain import rain
|
4 |
-
from context_examples.py import context, questions
|
5 |
-
|
6 |
-
rain(
|
7 |
-
emoji="❔",
|
8 |
-
font_size=54,
|
9 |
-
falling_speed=5,
|
10 |
-
animation_length="infinite",
|
11 |
-
)
|
12 |
-
|
13 |
-
model_name = "deepset/roberta-base-squad2"
|
14 |
-
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
15 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
16 |
-
|
17 |
-
def get_answer(context, question):
|
18 |
-
nlp = pipeline('question-answering', model=model, tokenizer=tokenizer)
|
19 |
-
QA_input = {'question': question, 'context': context}
|
20 |
-
res = nlp(QA_input)
|
21 |
-
answer = res['answer']
|
22 |
-
return answer
|
23 |
-
|
24 |
-
def main():
|
25 |
-
st.title("Question Answering App :robot_face:")
|
26 |
-
st.divider()
|
27 |
-
st.markdown("### **Enter the context and question, then click on ':blue[Get Answer]' to retrieve the answer:**")
|
28 |
-
|
29 |
-
selected_index = st.selectbox("Select an index:", range(len(contexts)))
|
30 |
-
context = st.text_area("**:blue[Context]**", contexts[selected_index])
|
31 |
-
question = st.text_input("**:blue[Question]**", questions[selected_index])
|
32 |
-
|
33 |
-
|
34 |
-
if st.button(":blue[**Get Answer**]"):
|
35 |
-
|
36 |
-
if context.strip() == "" or question.strip() == "":
|
37 |
-
st.warning("Please enter the context and question.")
|
38 |
-
else:
|
39 |
-
|
40 |
-
answer = get_answer(context, question)
|
41 |
-
st.success(f"Answer: {answer}")
|
42 |
-
|
43 |
-
|
44 |
-
if __name__ == "__main__":
|
45 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|