vchiang001 commited on
Commit
47d1a17
·
1 Parent(s): 7759242

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -3
app.py CHANGED
@@ -2,16 +2,20 @@ from huggingface_hub import from_pretrained_keras
2
  import gradio as gr
3
  import tensorflow as tf
4
  import numpy as np
 
5
 
6
- model = from_pretrained_keras("keras-io/semantic-segmentation")
7
 
8
  inputs = gr.inputs.Image()
9
  output = gr.output.Image()
10
 
11
 
12
  def predict(image_input):
 
 
13
  pass
14
-
 
15
  class PreTrainedPipeline():
16
  def __init__(self, path: str):
17
  # load the model
@@ -58,7 +62,7 @@ class PreTrainedPipeline():
58
  binary_masks[f"mask_{cls}"][row][col] = 0
59
 
60
  mask = binary_masks[f"mask_{cls}"]
61
- mask *= 255
62
  img = Image.fromarray(mask.astype(np.int8), mode="L")
63
 
64
  # we need to make it readable for the widget
@@ -68,4 +72,12 @@ class PreTrainedPipeline():
68
  mask = base64.b64encode(png_string).decode("utf-8")
69
 
70
  mask_codes[f"mask_{cls}"] = mask
 
71
 
 
 
 
 
 
 
 
 
2
  import gradio as gr
3
  import tensorflow as tf
4
  import numpy as np
5
+ import os
6
 
7
+ model = tf.keras,models.load.model(os.path.join
8
 
9
  inputs = gr.inputs.Image()
10
  output = gr.output.Image()
11
 
12
 
13
  def predict(image_input):
14
+ img = np.array(inputs)
15
+
16
  pass
17
+
18
+
19
  class PreTrainedPipeline():
20
  def __init__(self, path: str):
21
  # load the model
 
62
  binary_masks[f"mask_{cls}"][row][col] = 0
63
 
64
  mask = binary_masks[f"mask_{cls}"]
65
+ mask *= 255
66
  img = Image.fromarray(mask.astype(np.int8), mode="L")
67
 
68
  # we need to make it readable for the widget
 
72
  mask = base64.b64encode(png_string).decode("utf-8")
73
 
74
  mask_codes[f"mask_{cls}"] = mask
75
+
76
 
77
+ # widget needs the below format, for each class we return label and mask string
78
+ labels.append({
79
+ "label": f"LABEL_{cls}",
80
+ "mask": mask_codes[f"mask_{cls}"],
81
+ "score": 1.0,
82
+ })
83
+ return labels