Spaces:
Runtime error
Runtime error
Commit
·
ed73811
1
Parent(s):
dffdb39
Create new file
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import from_pretrained_keras
|
2 |
+
import gradio as gr
|
3 |
+
import tensorflow as tf
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
model = from_pretrained_keras("keras-io/semantic-segmentation")
|
7 |
+
|
8 |
+
inputs = gr.inputs.Image()
|
9 |
+
output = gr.output.Image()
|
10 |
+
|
11 |
+
|
12 |
+
def predict(image_input):
|
13 |
+
pass
|
14 |
+
|
15 |
+
class PreTrainedPipeline():
|
16 |
+
def __init__(self, path: str):
|
17 |
+
# load the model
|
18 |
+
self.model = keras.models.load_model(os.path.join(path, "tf_model.h5"))
|
19 |
+
|
20 |
+
def __call__(self, inputs: "Image.Image")-> List[Dict[str, Any]]:
|
21 |
+
|
22 |
+
# convert img to numpy array, resize and normalize to make the prediction
|
23 |
+
img = np.array(inputs)
|
24 |
+
|
25 |
+
im = tf.image.resize(img, (128, 128))
|
26 |
+
im = tf.cast(im, tf.float32) / 255.0
|
27 |
+
pred_mask = self.model.predict(im[tf.newaxis, ...])
|
28 |
+
|
29 |
+
# take the best performing class for each pixel
|
30 |
+
# the output of argmax looks like this [[1, 2, 0], ...]
|
31 |
+
pred_mask_arg = tf.argmax(pred_mask, axis=-1)
|
32 |
+
|
33 |
+
labels = []
|
34 |
+
|
35 |
+
# convert the prediction mask into binary masks for each class
|
36 |
+
binary_masks = {}
|
37 |
+
mask_codes = {}
|
38 |
+
|
39 |
+
# when we take tf.argmax() over pred_mask, it becomes a tensor object
|
40 |
+
# the shape becomes TensorShape object, looking like this TensorShape([128])
|
41 |
+
# we need to take get shape, convert to list and take the best one
|
42 |
+
|
43 |
+
rows = pred_mask_arg[0][1].get_shape().as_list()[0]
|
44 |
+
cols = pred_mask_arg[0][2].get_shape().as_list()[0]
|
45 |
+
|
46 |
+
for cls in range(pred_mask.shape[-1]):
|
47 |
+
|
48 |
+
binary_masks[f"mask_{cls}"] = np.zeros(shape = (pred_mask.shape[1], pred_mask.shape[2])) #create masks for each class
|
49 |
+
|
50 |
+
for row in range(rows):
|
51 |
+
|
52 |
+
for col in range(cols):
|
53 |
+
|
54 |
+
if pred_mask_arg[0][row][col] == cls:
|
55 |
+
|
56 |
+
binary_masks[f"mask_{cls}"][row][col] = 1
|
57 |
+
else:
|
58 |
+
binary_masks[f"mask_{cls}"][row][col] = 0
|
59 |
+
|
60 |
+
mask = binary_masks[f"mask_{cls}"]
|
61 |
+
mask *= 255
|
62 |
+
img = Image.fromarray(mask.astype(np.int8), mode="L")
|
63 |
+
|
64 |
+
# we need to make it readable for the widget
|
65 |
+
with io.BytesIO() as out:
|
66 |
+
img.save(out, format="PNG")
|
67 |
+
png_string = out.getvalue()
|
68 |
+
mask = base64.b64encode(png_string).decode("utf-8")
|
69 |
+
|
70 |
+
mask_codes[f"mask_{cls}"] = mask
|
71 |
+
|