File size: 23,665 Bytes
2a8eb7b 194b5c6 2a8eb7b 194b5c6 2a8eb7b 437b4ac 2a8eb7b 0117aaf 194b5c6 2a8eb7b bd54e0a 2a8eb7b 0389238 87bdc4a 0389238 2a8eb7b 0389238 d3564f7 0389238 d3564f7 0389238 d3564f7 87bdc4a 0389238 87bdc4a 0389238 2cab666 2a8eb7b bfa01e1 de32120 9b087dd 2a8eb7b de32120 bfa01e1 2a8eb7b 0389238 2a8eb7b 0389238 2a8eb7b 0389238 2a8eb7b 0389238 2a8eb7b 0389238 2a8eb7b 0389238 2a8eb7b 0389238 2a8eb7b 0389238 2a8eb7b bd54e0a 2a8eb7b bd54e0a 2a8eb7b bd54e0a 2a8eb7b f683826 e58222b c1b1116 f683826 c1b1116 f683826 2a8eb7b bd54e0a 2a8eb7b fcf4a3d 2a8eb7b 0389238 fcf4a3d e4f4c00 2a8eb7b fcf4a3d 511ec8f 0389238 2a8eb7b 0389238 fcf4a3d 0389238 2a8eb7b 0389238 2a8eb7b 0389238 2a8eb7b 0389238 2a8eb7b 0389238 2a8eb7b 0389238 2a8eb7b d71f294 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 |
import os
import json
import copy
import time
import random
import logging
import numpy as np
from typing import Any, Dict, List, Optional, Union
import gradio as gr
import logging
import torch
from PIL import Image
import spaces
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
import requests
import pandas as pd
from transformers.utils import move_cache
move_cache()
from diffusers import (
DiffusionPipeline,
AutoencoderTiny,
AutoencoderKL,
AutoPipelineForImage2Image,
FluxPipeline,
FlowMatchEulerDiscreteScheduler)
from huggingface_hub import (
hf_hub_download,
HfFileSystem,
ModelCard,
snapshot_download)
from diffusers.utils import load_image
from huggingface_hub import HfApi
token = os.getenv("HF_TOKEN")
#---if workspace = local or colab---
# Authenticate with Hugging Face
# from huggingface_hub import login
# Log in to Hugging Face using the provided token
# hf_token = 'hf-token-authentication'
# login(hf_token)
def calculate_shift(
image_seq_len,
base_seq_len: int = 256,
max_seq_len: int = 4096,
base_shift: float = 0.5,
max_shift: float = 1.16,
):
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
b = base_shift - m * base_seq_len
mu = image_seq_len * m + b
return mu
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
if timesteps is not None and sigmas is not None:
raise ValueError("Apenas um entre `timesteps` ou `sigmas` pode ser passado. Por favor, escolha um para definir valores personalizados")
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
# FLUX pipeline
@torch.inference_mode()
def flux_pipe_call_that_returns_an_iterable_of_images(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 28,
timesteps: List[int] = None,
guidance_scale: float = 3.5,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
max_sequence_length: int = 512,
good_vae: Optional[Any] = None,
):
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
self.check_inputs(
prompt,
prompt_2,
height,
width,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
num_channels_latents = self.transformer.config.in_channels // 4
latents, latent_image_ids = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
image_seq_len = latents.shape[1]
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
sigmas,
mu=mu,
)
self._num_timesteps = len(timesteps)
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
for i, t in enumerate(timesteps):
if self.interrupt:
continue
timestep = t.expand(latents.shape[0]).to(latents.dtype)
noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(latents_for_image, return_dict=False)[0]
yield self.image_processor.postprocess(image, output_type=output_type)[0]
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
torch.cuda.empty_cache()
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
image = good_vae.decode(latents, return_dict=False)[0]
self.maybe_free_model_hooks()
torch.cuda.empty_cache()
yield self.image_processor.postprocess(image, output_type=output_type)[0]
#------------------------------------------------------------------------------------------------------------------------------------------------------------#
loras = [
#Super-Realism
{
"image": "https://huggingface.co/Collos/Jalves/resolve/main/images/jose.webp",
"title": "Jose Alves",
"repo": "Collos/Jalves",
"weights": "Jalves.safetensors",
"trigger_word": "José Alves"
},
{
"image": "https://huggingface.co/Collos/JulioCesar/resolve/main/images/WhatsApp%20Image%202024-12-10%20at%2009.33.50.jpeg",
"title": "Júlio César",
"repo": "Collos/JulioCesar",
"weights": "julio.safetensorss",
"trigger_word": "Júlio"
},
{
"image": "https://huggingface.co/Collos/PedroJr/resolve/main/images/WhatsApp%20Image%202024-12-10%20at%2009.34.01.jpeg",
"title": "Pedro Jr.",
"repo": "Collos/PedroJr",
"weights": "pedrojr.safetensors",
"trigger_word": "Pedro"
},
{
"image": "https://huggingface.co/Collos/JoseClovis/resolve/main/images/WhatsApp%20Image%202024-12-10%20at%2009.38.50.jpeg",
"title": "José Clóvis",
"repo": "Collos/JoseClovis",
"weights": "clovis.safetensors",
"trigger_word": "Clóvis"
}
#add new
]
# Initialize the base model
use_auth_token=True
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
base_model,
vae=good_vae,
transformer=pipe.transformer,
text_encoder=pipe.text_encoder,
tokenizer=pipe.tokenizer,
text_encoder_2=pipe.text_encoder_2,
tokenizer_2=pipe.tokenizer_2,
torch_dtype=dtype
)
#TAEF1 is very tiny autoencoder which uses the same "latent API" as FLUX.1's VAE. FLUX.1 is useful for real-time previewing of the FLUX.1 generation process.#
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(base_model,
vae=good_vae,
transformer=pipe.transformer,
text_encoder=pipe.text_encoder,
tokenizer=pipe.tokenizer,
text_encoder_2=pipe.text_encoder_2,
tokenizer_2=pipe.tokenizer_2,
torch_dtype=dtype
)
MAX_SEED = 2**32-1
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"tempo passado para {self.activity_name}: {self.elapsed_time:.6f} segundos")
else:
print(f"tempo passado: {self.elapsed_time:.6f} segundos")
def update_selection(evt: gr.SelectData, width, height):
selected_lora = loras[evt.index]
new_placeholder = f"Digite o prompt para {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selecionado: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅"
if "aspect" in selected_lora:
if selected_lora["aspect"] == "retrato":
width = 768
height = 1024
elif selected_lora["aspect"] == "paisagem":
width = 1024
height = 768
else:
width = 1024
height = 1024
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index,
width,
height,
)
@spaces.GPU(duration=100)
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
pipe.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
with calculateDuration("Generating image"):
# Generate image
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt_mash,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
output_type="pil",
good_vae=good_vae,
):
yield img
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, lora_scale, seed):
generator = torch.Generator(device="cuda").manual_seed(seed)
pipe_i2i.to("cuda")
image_input = load_image(image_input_path)
final_image = pipe_i2i(
prompt=prompt_mash,
image=image_input,
strength=image_strength,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
output_type="pil",
).images[0]
return final_image
@spaces.GPU(duration=100)
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
if selected_index is None:
raise gr.Error("Selecione um modelo para continuar.")
selected_lora = loras[selected_index]
lora_path = selected_lora["repo"]
trigger_word = selected_lora["trigger_word"]
if(trigger_word):
if "trigger_position" in selected_lora:
if selected_lora["trigger_position"] == "prepend":
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = f"{prompt} {trigger_word}"
else:
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = prompt
with calculateDuration("Carregando Modelo"):
pipe.unload_lora_weights()
pipe_i2i.unload_lora_weights()
#LoRA weights flow
with calculateDuration(f"Carregando modelo para {selected_lora['title']}"):
pipe_to_use = pipe_i2i if image_input is not None else pipe
weight_name = selected_lora.get("Pesos", None)
pipe_to_use.load_lora_weights(
lora_path,
weight_name=weight_name,
low_cpu_mem_usage=True
)
with calculateDuration("Gerando fontes"):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if(image_input is not None):
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed)
yield final_image, seed, gr.update(visible=False)
else:
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
final_image = None
step_counter = 0
for image in image_generator:
step_counter+=1
final_image = image
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
yield image, seed, gr.update(value=progress_bar, visible=True)
yield final_image, seed, gr.update(value=progress_bar, visible=False)
def get_huggingface_safetensors(link):
split_link = link.split("/")
if(len(split_link) == 2):
model_card = ModelCard.load(link)
base_model = model_card.data.get("base_model")
print(base_model)
#Allows Both
if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")):
raise Exception("Flux LoRA Not Found!")
# Only allow "black-forest-labs/FLUX.1-dev"
#if base_model != "black-forest-labs/FLUX.1-dev":
#raise Exception("Only FLUX.1-dev is supported, other LoRA models are not allowed!")
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
trigger_word = model_card.data.get("instance_prompt", "")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
fs = HfFileSystem()
try:
list_of_files = fs.ls(link, detail=False)
for file in list_of_files:
if(file.endswith(".safetensors")):
safetensors_name = file.split("/")[-1]
if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
image_elements = file.split("/")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
except Exception as e:
print(e)
gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
return split_link[1], link, safetensors_name, trigger_word, image_url
def check_custom_model(link):
if(link.startswith("https://")):
if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")):
link_split = link.split("huggingface.co/")
return get_huggingface_safetensors(link_split[1])
else:
return get_huggingface_safetensors(link)
def add_custom_lora(custom_lora):
global loras
if(custom_lora):
try:
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
print(f"Modelo Externo: {repo}")
card = f'''
<div class="custom_lora_card">
<span>Loaded custom LoRA:</span>
<div class="card_internal">
<img src="{image}" />
<div>
<h3>{title}</h3>
<small>{"Usando: <code><b>"+trigger_word+"</code></b> como palavra-chave" if trigger_word else "Não encontramos a palavra-chave, se tiver, coloque-a no prompt."}<br></small>
</div>
</div>
</div>
'''
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
if(not existing_item_index):
new_item = {
"image": image,
"title": title,
"repo": repo,
"weights": path,
"trigger_word": trigger_word
}
print(new_item)
existing_item_index = len(loras)
loras.append(new_item)
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
except Exception as e:
gr.Warning(f"Modelo Inválido: ou o link está errado ou não é um FLUX")
return gr.update(visible=True, value=f"Modelo Inválido: ou o link está errado ou não é um FLUX"), gr.update(visible=False), gr.update(), "", None, ""
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
def remove_custom_lora():
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
run_lora.zerogpu = True
#import gradio as gr
collos = gr.themes.Soft(
primary_hue="gray",
secondary_hue="stone",
neutral_hue="slate",
radius_size=gr.themes.Size(lg="15px", md="8px", sm="6px", xl="16px", xs="4px", xxl="24px", xxs="2px")
).set(
body_background_fill='*primary_100',
embed_radius='*radius_lg',
shadow_drop='0 1px 2px rgba(0, 0, 0, 0.1)',
shadow_drop_lg='0 1px 2px rgba(0, 0, 0, 0.1)',
shadow_inset='0 1px 2px rgba(0, 0, 0, 0.1)',
shadow_spread='0 1px 2px rgba(0, 0, 0, 0.1)',
shadow_spread_dark='0 1px 2px rgba(0, 0, 0, 0.1)',
block_radius='*radius_lg',
block_shadow='*shadow_drop',
container_radius='*radius_lg'
)
with gr.Blocks(theme=collos, delete_cache=(60, 60)) as app:
title = gr.HTML(
"""<img src="https://collos.com.br/wp-content/uploads/2024/12/collos_p.png" alt="Logo" style="display: block; margin: 0 auto; padding: 5px 0px 20px 0px; width: 200px;" />""",
elem_id="title",
)
selected_index = gr.State(None)
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Prompt", lines=1, placeholder=":/ Selecione o modelo ")
with gr.Column(scale=1):
generate_button = gr.Button("Gerar Imagem", variant="primary", elem_id="cta")
with gr.Row():
with gr.Column():
selected_info = gr.Markdown("")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
allow_preview=False,
columns=3,
show_share_button=False
)
with gr.Group():
custom_lora = gr.Textbox(label="Selecione um Modelo Externo", placeholder="black-forest-labs/FLUX.1-dev")
gr.Markdown("[Cheque a lista de modelos do Huggingface](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
custom_lora_info = gr.HTML(visible=False)
custom_lora_button = gr.Button("Remova modelo Externo", visible=False)
with gr.Column():
progress_bar = gr.Markdown(elem_id="progress", visible=False)
result = gr.Image(label="Imagem Gerada")
with gr.Row():
with gr.Accordion("Configurações Avançadas", open=False):
with gr.Row():
input_image = gr.Image(label="Insira uma Imagem", type="filepath")
image_strength = gr.Slider(label="Remossão de ruído", info="Valores mais baixos significam maior influência da imagem.", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
with gr.Column():
with gr.Row():
cfg_scale = gr.Slider(label="Aumentar Escala", minimum=1, maximum=20, step=0.5, value=3.5)
steps = gr.Slider(label="Passos", minimum=1, maximum=50, step=1, value=28)
with gr.Row():
width = gr.Slider(label="Largura", minimum=256, maximum=1536, step=64, value=1024)
height = gr.Slider(label="Altura", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="Fonte Randomizada")
seed = gr.Slider(label="Fontes", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
lora_scale = gr.Slider(label="Escala do Modelo", minimum=0, maximum=3, step=0.01, value=0.95)
gallery.select(
update_selection,
inputs=[width, height],
outputs=[prompt, selected_info, selected_index, width, height]
)
custom_lora.input(
add_custom_lora,
inputs=[custom_lora],
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
)
custom_lora_button.click(
remove_custom_lora,
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=run_lora,
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
outputs=[result, seed, progress_bar]
)
app.queue()
app.launch() |