Update app.py
Browse files
app.py
CHANGED
@@ -251,6 +251,7 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
251 |
# URL do config.json no Space
|
252 |
config_url = "https://huggingface.co/spaces/vcollos/family/resolve/main/config.json"
|
253 |
local_config_path = "./config.json"
|
|
|
254 |
|
255 |
# Baixar o config.json, se ainda não existir localmente
|
256 |
if not os.path.exists(local_config_path):
|
@@ -259,13 +260,9 @@ if not os.path.exists(local_config_path):
|
|
259 |
with open(local_config_path, "wb") as f:
|
260 |
f.write(response.content)
|
261 |
|
262 |
-
# Caminho para os pesos
|
263 |
-
base_model = "SG161222/Verus_Vision_1.0b"
|
264 |
-
weights_path = "./ae.safetensors"
|
265 |
-
|
266 |
# Baixar os pesos do modelo se necessário
|
267 |
if not os.path.exists(weights_path):
|
268 |
-
weights_url = f"https://huggingface.co/
|
269 |
response = requests.get(weights_url)
|
270 |
response.raise_for_status()
|
271 |
with open(weights_path, "wb") as f:
|
@@ -273,21 +270,22 @@ if not os.path.exists(weights_path):
|
|
273 |
|
274 |
# Carregar o Autoencoder com o config.json local
|
275 |
good_vae = AutoencoderKL.from_pretrained(
|
276 |
-
pretrained_model_name_or_path=
|
277 |
-
|
278 |
-
filename=weights_path, # Pesos locais
|
279 |
torch_dtype=dtype
|
280 |
).to(device)
|
281 |
|
282 |
-
#
|
283 |
pipe = DiffusionPipeline.from_pretrained(
|
284 |
-
pretrained_model_name_or_path=
|
285 |
-
config=local_config_path, # Configuração local
|
286 |
filename="VerusVision_1.0b_Transformer_fp16.safetensors",
|
287 |
torch_dtype=dtype
|
288 |
).to(device)
|
289 |
|
290 |
print("Modelo carregado com sucesso!")
|
|
|
|
|
|
|
291 |
# Se precisar do Image-to-Image
|
292 |
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
293 |
base_model,
|
|
|
251 |
# URL do config.json no Space
|
252 |
config_url = "https://huggingface.co/spaces/vcollos/family/resolve/main/config.json"
|
253 |
local_config_path = "./config.json"
|
254 |
+
weights_path = "./ae.safetensors"
|
255 |
|
256 |
# Baixar o config.json, se ainda não existir localmente
|
257 |
if not os.path.exists(local_config_path):
|
|
|
260 |
with open(local_config_path, "wb") as f:
|
261 |
f.write(response.content)
|
262 |
|
|
|
|
|
|
|
|
|
263 |
# Baixar os pesos do modelo se necessário
|
264 |
if not os.path.exists(weights_path):
|
265 |
+
weights_url = f"https://huggingface.co/SG161222/Verus_Vision_1.0b/resolve/main/ae.safetensors"
|
266 |
response = requests.get(weights_url)
|
267 |
response.raise_for_status()
|
268 |
with open(weights_path, "wb") as f:
|
|
|
270 |
|
271 |
# Carregar o Autoencoder com o config.json local
|
272 |
good_vae = AutoencoderKL.from_pretrained(
|
273 |
+
pretrained_model_name_or_path=local_config_path, # Caminho local do config.json
|
274 |
+
filename=weights_path, # Pesos locais
|
|
|
275 |
torch_dtype=dtype
|
276 |
).to(device)
|
277 |
|
278 |
+
# Configurar o pipeline principal com o config.json local
|
279 |
pipe = DiffusionPipeline.from_pretrained(
|
280 |
+
pretrained_model_name_or_path=local_config_path, # Caminho local do config.json
|
|
|
281 |
filename="VerusVision_1.0b_Transformer_fp16.safetensors",
|
282 |
torch_dtype=dtype
|
283 |
).to(device)
|
284 |
|
285 |
print("Modelo carregado com sucesso!")
|
286 |
+
|
287 |
+
|
288 |
+
|
289 |
# Se precisar do Image-to-Image
|
290 |
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
291 |
base_model,
|