Update app.py
Browse files
app.py
CHANGED
@@ -34,10 +34,10 @@ lora_models = {
|
|
34 |
"weights": "lora.safetensors",
|
35 |
"trigger_word": "" # Sem trigger word específica
|
36 |
},
|
37 |
-
"
|
38 |
-
"repo": "vcollos/
|
39 |
-
"weights": "
|
40 |
-
"trigger_word": "A photo of
|
41 |
}
|
42 |
}
|
43 |
|
@@ -78,11 +78,11 @@ def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora
|
|
78 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
79 |
|
80 |
# Aplica os dois LoRAs combinados
|
81 |
-
pipe.set_adapters(["AndroFlux", "
|
82 |
|
83 |
-
# Adiciona trigger words apenas se
|
84 |
if lora_scale_2 > 0:
|
85 |
-
prompt = f"{lora_models['
|
86 |
|
87 |
# Gera a imagem
|
88 |
image = pipe(
|
@@ -141,7 +141,7 @@ with gr.Blocks(theme=gr_theme) as app:
|
|
141 |
|
142 |
# Sliders para os pesos dos LoRAs
|
143 |
lora_scale_1 = gr.Slider(label="LoRA Scale (AndroFlux)", minimum=0, maximum=1, step=0.01, value=0.1)
|
144 |
-
lora_scale_2 = gr.Slider(label="LoRA Scale (
|
145 |
|
146 |
with gr.Column(scale=2):
|
147 |
result = gr.Image(label="Generated Image")
|
|
|
34 |
"weights": "lora.safetensors",
|
35 |
"trigger_word": "" # Sem trigger word específica
|
36 |
},
|
37 |
+
"vgnCollos": {
|
38 |
+
"repo": "vcollos/vgn",
|
39 |
+
"weights": "vgn.safetensors",
|
40 |
+
"trigger_word": "A photo of vgn,"
|
41 |
}
|
42 |
}
|
43 |
|
|
|
78 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
79 |
|
80 |
# Aplica os dois LoRAs combinados
|
81 |
+
pipe.set_adapters(["AndroFlux", "vgnCollos"], adapter_weights=[lora_scale_1, lora_scale_2])
|
82 |
|
83 |
+
# Adiciona trigger words apenas se vgnCollos estiver ativado
|
84 |
if lora_scale_2 > 0:
|
85 |
+
prompt = f"{lora_models['vgnCollos']['trigger_word']} {prompt}"
|
86 |
|
87 |
# Gera a imagem
|
88 |
image = pipe(
|
|
|
141 |
|
142 |
# Sliders para os pesos dos LoRAs
|
143 |
lora_scale_1 = gr.Slider(label="LoRA Scale (AndroFlux)", minimum=0, maximum=1, step=0.01, value=0.1)
|
144 |
+
lora_scale_2 = gr.Slider(label="LoRA Scale (vgnCollos)", minimum=0, maximum=1, step=0.01, value=1)
|
145 |
|
146 |
with gr.Column(scale=2):
|
147 |
result = gr.Image(label="Generated Image")
|