File size: 4,268 Bytes
a530517
f667891
 
 
 
 
18e3498
 
f667891
 
 
 
 
 
 
 
 
18e3498
 
 
 
 
 
 
 
 
 
 
 
f667891
 
 
 
 
 
18e3498
 
 
 
 
f667891
 
18e3498
 
 
 
 
 
 
 
 
f667891
 
 
 
 
 
18e3498
f667891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18e3498
6a9f1fe
f667891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a9f1fe
f667891
18e3498
 
 
 
f667891
 
6a9f1fe
f667891
 
18e3498
 
 
f667891
5f2eaac
18e3498
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline
import boto3
from io import BytesIO

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

# Initialize S3 client
s3_client = boto3.client('s3')
BUCKET_NAME = 'your-s3-bucket-name'  # Replace with your S3 bucket name

def upload_to_s3(image, image_name):
    """Upload an image to S3 bucket."""
    buffer = BytesIO()
    image.save(buffer, format="PNG")
    buffer.seek(0)
    s3_client.put_object(Bucket=BUCKET_NAME, Key=image_name, Body=buffer, ContentType='image/png')
    return f"https://{BUCKET_NAME}.s3.amazonaws.com/{image_name}"

@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    image = pipe(
            prompt=prompt, 
            width=width,
            height=height,
            num_inference_steps=num_inference_steps, 
            generator=generator,
            guidance_scale=0.0
    ).images[0] 
    
    # Generate a unique name for the image
    image_name = f"{seed}_{prompt[:10]}.png"
    
    # Upload image to S3
    s3_url = upload_to_s3(image, image_name)
    
    return image, seed, s3_url

examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# FLUX.1 [schnell]
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)
        s3_link = gr.Text(label="S3 URL", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=4,
                )
        
        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt],
            outputs=[result, seed, s3_link],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
        outputs=[result, seed, s3_link]
    )

demo.launch()