File size: 6,774 Bytes
10181aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import cv2
import time
import numpy as np
import mediapipe as mp
from mediapipe.python.solutions.drawing_utils import _normalized_to_pixel_coordinates as denormalize_coordinates
def get_mediapipe_app(
max_num_faces=1,
refine_landmarks=True,
min_detection_confidence=0.5,
min_tracking_confidence=0.5,
):
"""Initialize and return Mediapipe FaceMesh Solution Graph object"""
face_mesh = mp.solutions.face_mesh.FaceMesh(
max_num_faces=max_num_faces,
refine_landmarks=refine_landmarks,
min_detection_confidence=min_detection_confidence,
min_tracking_confidence=min_tracking_confidence,
)
return face_mesh
def distance(point_1, point_2):
"""Calculate l2-norm between two points"""
dist = sum([(i - j) ** 2 for i, j in zip(point_1, point_2)]) ** 0.5
return dist
def get_ear(landmarks, refer_idxs, frame_width, frame_height):
"""
Calculate Eye Aspect Ratio for one eye.
Args:
landmarks: (list) Detected landmarks list
refer_idxs: (list) Index positions of the chosen landmarks
in order P1, P2, P3, P4, P5, P6
frame_width: (int) Width of captured frame
frame_height: (int) Height of captured frame
Returns:
ear: (float) Eye aspect ratio
"""
try:
# Compute the euclidean distance between the horizontal
coords_points = []
for i in refer_idxs:
lm = landmarks[i]
coord = denormalize_coordinates(lm.x, lm.y, frame_width, frame_height)
coords_points.append(coord)
# Eye landmark (x, y)-coordinates
P2_P6 = distance(coords_points[1], coords_points[5])
P3_P5 = distance(coords_points[2], coords_points[4])
P1_P4 = distance(coords_points[0], coords_points[3])
# Compute the eye aspect ratio
ear = (P2_P6 + P3_P5) / (2.0 * P1_P4)
except:
ear = 0.0
coords_points = None
return ear, coords_points
def calculate_avg_ear(landmarks, left_eye_idxs, right_eye_idxs, image_w, image_h):
# Calculate Eye aspect ratio
left_ear, left_lm_coordinates = get_ear(landmarks, left_eye_idxs, image_w, image_h)
right_ear, right_lm_coordinates = get_ear(landmarks, right_eye_idxs, image_w, image_h)
Avg_EAR = (left_ear + right_ear) / 2.0
return Avg_EAR, (left_lm_coordinates, right_lm_coordinates)
def plot_eye_landmarks(frame, left_lm_coordinates, right_lm_coordinates, color):
for lm_coordinates in [left_lm_coordinates, right_lm_coordinates]:
if lm_coordinates:
for coord in lm_coordinates:
cv2.circle(frame, coord, 2, color, -1)
frame = cv2.flip(frame, 1)
return frame
def plot_text(image, text, origin, color, font=cv2.FONT_HERSHEY_SIMPLEX, fntScale=0.8, thickness=2):
image = cv2.putText(image, text, origin, font, fntScale, color, thickness)
return image
class VideoFrameHandler:
def __init__(self):
"""
Initialize the necessary constants, mediapipe app
and tracker variables
"""
# Left and right eye chosen landmarks.
self.eye_idxs = {
"left": [362, 385, 387, 263, 373, 380],
"right": [33, 160, 158, 133, 153, 144],
}
# Used for coloring landmark points.
# Its value depends on the current EAR value.
self.RED = (0, 0, 255) # BGR
self.GREEN = (0, 255, 0) # BGR
# Initializing Mediapipe FaceMesh solution pipeline
self.facemesh_model = get_mediapipe_app()
# For tracking counters and sharing states in and out of callbacks.
self.state_tracker = {
"start_time": time.perf_counter(),
"DROWSY_TIME": 0.0, # Holds the amount of time passed with EAR < EAR_THRESH
"COLOR": self.GREEN,
"play_alarm": False,
}
self.EAR_txt_pos = (10, 30)
def process(self, frame: np.array, thresholds: dict):
"""
This function is used to implement our Drowsy detection algorithm
Args:
frame: (np.array) Input frame matrix.
thresholds: (dict) Contains the two threshold values
WAIT_TIME and EAR_THRESH.
Returns:
The processed frame and a boolean flag to
indicate if the alarm should be played or not.
"""
# To improve performance,
# mark the frame as not writeable to pass by reference.
frame.flags.writeable = False
frame_h, frame_w, _ = frame.shape
DROWSY_TIME_txt_pos = (10, int(frame_h // 2 * 1.7))
ALM_txt_pos = (10, int(frame_h // 2 * 1.85))
results = self.facemesh_model.process(frame)
if results.multi_face_landmarks:
landmarks = results.multi_face_landmarks[0].landmark
EAR, coordinates = calculate_avg_ear(landmarks, self.eye_idxs["left"], self.eye_idxs["right"], frame_w, frame_h)
frame = plot_eye_landmarks(frame, coordinates[0], coordinates[1], self.state_tracker["COLOR"])
if EAR < thresholds["EAR_THRESH"]:
# Increase DROWSY_TIME to track the time period with EAR less than threshold
# and reset the start_time for the next iteration.
end_time = time.perf_counter()
self.state_tracker["DROWSY_TIME"] += end_time - self.state_tracker["start_time"]
self.state_tracker["start_time"] = end_time
self.state_tracker["COLOR"] = self.RED
if self.state_tracker["DROWSY_TIME"] >= thresholds["WAIT_TIME"]:
self.state_tracker["play_alarm"] = True
plot_text(frame, "WAKE UP! WAKE UP", ALM_txt_pos, self.state_tracker["COLOR"])
else:
self.state_tracker["start_time"] = time.perf_counter()
self.state_tracker["DROWSY_TIME"] = 0.0
self.state_tracker["COLOR"] = self.GREEN
self.state_tracker["play_alarm"] = False
EAR_txt = f"EAR: {round(EAR, 2)}"
DROWSY_TIME_txt = f"DROWSY: {round(self.state_tracker['DROWSY_TIME'], 3)} Secs"
plot_text(frame, EAR_txt, self.EAR_txt_pos, self.state_tracker["COLOR"])
plot_text(frame, DROWSY_TIME_txt, DROWSY_TIME_txt_pos, self.state_tracker["COLOR"])
else:
self.state_tracker["start_time"] = time.perf_counter()
self.state_tracker["DROWSY_TIME"] = 0.0
self.state_tracker["COLOR"] = self.GREEN
self.state_tracker["play_alarm"] = False
# Flip the frame horizontally for a selfie-view display.
frame = cv2.flip(frame, 1)
return frame, self.state_tracker["play_alarm"]
|