File size: 6,774 Bytes
10181aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import cv2
import time
import numpy as np
import mediapipe as mp
from mediapipe.python.solutions.drawing_utils import _normalized_to_pixel_coordinates as denormalize_coordinates


def get_mediapipe_app(
    max_num_faces=1,
    refine_landmarks=True,
    min_detection_confidence=0.5,
    min_tracking_confidence=0.5,
):
    """Initialize and return Mediapipe FaceMesh Solution Graph object"""
    face_mesh = mp.solutions.face_mesh.FaceMesh(
        max_num_faces=max_num_faces,
        refine_landmarks=refine_landmarks,
        min_detection_confidence=min_detection_confidence,
        min_tracking_confidence=min_tracking_confidence,
    )

    return face_mesh


def distance(point_1, point_2):
    """Calculate l2-norm between two points"""
    dist = sum([(i - j) ** 2 for i, j in zip(point_1, point_2)]) ** 0.5
    return dist


def get_ear(landmarks, refer_idxs, frame_width, frame_height):
    """
    Calculate Eye Aspect Ratio for one eye.

    Args:
        landmarks: (list) Detected landmarks list
        refer_idxs: (list) Index positions of the chosen landmarks
                            in order P1, P2, P3, P4, P5, P6

        frame_width: (int) Width of captured frame
        frame_height: (int) Height of captured frame

    Returns:
        ear: (float) Eye aspect ratio
    """
    try:
        # Compute the euclidean distance between the horizontal
        coords_points = []
        for i in refer_idxs:
            lm = landmarks[i]
            coord = denormalize_coordinates(lm.x, lm.y, frame_width, frame_height)
            coords_points.append(coord)

        # Eye landmark (x, y)-coordinates
        P2_P6 = distance(coords_points[1], coords_points[5])
        P3_P5 = distance(coords_points[2], coords_points[4])
        P1_P4 = distance(coords_points[0], coords_points[3])

        # Compute the eye aspect ratio
        ear = (P2_P6 + P3_P5) / (2.0 * P1_P4)

    except:
        ear = 0.0
        coords_points = None

    return ear, coords_points


def calculate_avg_ear(landmarks, left_eye_idxs, right_eye_idxs, image_w, image_h):
    # Calculate Eye aspect ratio

    left_ear, left_lm_coordinates = get_ear(landmarks, left_eye_idxs, image_w, image_h)
    right_ear, right_lm_coordinates = get_ear(landmarks, right_eye_idxs, image_w, image_h)
    Avg_EAR = (left_ear + right_ear) / 2.0

    return Avg_EAR, (left_lm_coordinates, right_lm_coordinates)


def plot_eye_landmarks(frame, left_lm_coordinates, right_lm_coordinates, color):
    for lm_coordinates in [left_lm_coordinates, right_lm_coordinates]:
        if lm_coordinates:
            for coord in lm_coordinates:
                cv2.circle(frame, coord, 2, color, -1)

    frame = cv2.flip(frame, 1)
    return frame


def plot_text(image, text, origin, color, font=cv2.FONT_HERSHEY_SIMPLEX, fntScale=0.8, thickness=2):
    image = cv2.putText(image, text, origin, font, fntScale, color, thickness)
    return image


class VideoFrameHandler:
    def __init__(self):
        """
        Initialize the necessary constants, mediapipe app
        and tracker variables
        """
        # Left and right eye chosen landmarks.
        self.eye_idxs = {
            "left": [362, 385, 387, 263, 373, 380],
            "right": [33, 160, 158, 133, 153, 144],
        }

        # Used for coloring landmark points.
        # Its value depends on the current EAR value.
        self.RED = (0, 0, 255)  # BGR
        self.GREEN = (0, 255, 0)  # BGR

        # Initializing Mediapipe FaceMesh solution pipeline
        self.facemesh_model = get_mediapipe_app()

        # For tracking counters and sharing states in and out of callbacks.
        self.state_tracker = {
            "start_time": time.perf_counter(),
            "DROWSY_TIME": 0.0,  # Holds the amount of time passed with EAR < EAR_THRESH
            "COLOR": self.GREEN,
            "play_alarm": False,
        }

        self.EAR_txt_pos = (10, 30)

    def process(self, frame: np.array, thresholds: dict):
        """
        This function is used to implement our Drowsy detection algorithm

        Args:
            frame: (np.array) Input frame matrix.
            thresholds: (dict) Contains the two threshold values
                               WAIT_TIME and EAR_THRESH.

        Returns:
            The processed frame and a boolean flag to
            indicate if the alarm should be played or not.
        """

        # To improve performance,
        # mark the frame as not writeable to pass by reference.
        frame.flags.writeable = False
        frame_h, frame_w, _ = frame.shape

        DROWSY_TIME_txt_pos = (10, int(frame_h // 2 * 1.7))
        ALM_txt_pos = (10, int(frame_h // 2 * 1.85))

        results = self.facemesh_model.process(frame)

        if results.multi_face_landmarks:
            landmarks = results.multi_face_landmarks[0].landmark
            EAR, coordinates = calculate_avg_ear(landmarks, self.eye_idxs["left"], self.eye_idxs["right"], frame_w, frame_h)
            frame = plot_eye_landmarks(frame, coordinates[0], coordinates[1], self.state_tracker["COLOR"])

            if EAR < thresholds["EAR_THRESH"]:

                # Increase DROWSY_TIME to track the time period with EAR less than threshold
                # and reset the start_time for the next iteration.
                end_time = time.perf_counter()

                self.state_tracker["DROWSY_TIME"] += end_time - self.state_tracker["start_time"]
                self.state_tracker["start_time"] = end_time
                self.state_tracker["COLOR"] = self.RED

                if self.state_tracker["DROWSY_TIME"] >= thresholds["WAIT_TIME"]:
                    self.state_tracker["play_alarm"] = True
                    plot_text(frame, "WAKE UP! WAKE UP", ALM_txt_pos, self.state_tracker["COLOR"])

            else:
                self.state_tracker["start_time"] = time.perf_counter()
                self.state_tracker["DROWSY_TIME"] = 0.0
                self.state_tracker["COLOR"] = self.GREEN
                self.state_tracker["play_alarm"] = False

            EAR_txt = f"EAR: {round(EAR, 2)}"
            DROWSY_TIME_txt = f"DROWSY: {round(self.state_tracker['DROWSY_TIME'], 3)} Secs"
            plot_text(frame, EAR_txt, self.EAR_txt_pos, self.state_tracker["COLOR"])
            plot_text(frame, DROWSY_TIME_txt, DROWSY_TIME_txt_pos, self.state_tracker["COLOR"])

        else:
            self.state_tracker["start_time"] = time.perf_counter()
            self.state_tracker["DROWSY_TIME"] = 0.0
            self.state_tracker["COLOR"] = self.GREEN
            self.state_tracker["play_alarm"] = False

            # Flip the frame horizontally for a selfie-view display.
            frame = cv2.flip(frame, 1)

        return frame, self.state_tracker["play_alarm"]