File size: 4,897 Bytes
7f46a81
 
 
 
 
 
 
0a5fe3b
 
907ed81
 
4949582
907ed81
7f46a81
 
907ed81
7f46a81
 
907ed81
 
 
 
7f46a81
0a5fe3b
 
 
 
 
 
 
 
 
 
 
 
907ed81
2a5b875
907ed81
 
2a5b875
907ed81
 
 
 
 
e80161b
 
907ed81
 
3e51bf6
0a5fe3b
 
 
 
907ed81
 
 
 
7f46a81
 
 
 
 
 
907ed81
7f46a81
 
 
 
 
 
907ed81
7f46a81
 
 
 
907ed81
7f46a81
 
907ed81
 
 
0a5fe3b
 
 
 
 
 
c0b07b2
907ed81
 
 
 
 
0a5fe3b
3e51bf6
 
 
 
 
2a5b875
 
 
0a5fe3b
 
2a5b875
 
 
 
 
 
 
 
 
 
 
 
0a5fe3b
2a5b875
7f46a81
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from omegaconf import OmegaConf
from query import VectaraQuery
import os

import streamlit as st
from PIL import Image

max_examples = 4
 
def isTrue(x) -> bool:
    if isinstance(x, bool):
        return x
    return x.strip().lower() == 'true'

def launch_bot():
    def generate_response(question):
        response = vq.submit_query(question)
        return response
    
    def generate_streaming_response(question):
        response = vq.submit_query_streaming(question)
        return response

    def show_example_questions():
        if len(st.session_state.example_messages) > 0 and st.session_state.first_turn:
            st.markdown("<h6>Queries To Try:</h6>", unsafe_allow_html=True)
            ex_cols = st.columns(max_examples)
            for i, example in enumerate(st.session_state.example_messages):
                with ex_cols[i]:
                    if st.button(example, key=f"example_{i}"):
                        st.session_state.ex_prompt = example
                        st.session_state.first_turn = False
                        return True
        return False
    
    if 'cfg' not in st.session_state:
        corpus_ids = str(os.environ['corpus_ids']).split(',')
        cfg = OmegaConf.create({
            'customer_id': str(os.environ['customer_id']),
            'corpus_ids': corpus_ids,
            'api_key': str(os.environ['api_key']),
            'title': os.environ['title'],
            'description': os.environ['description'],
            'source_data_desc': os.environ['source_data_desc'],
            'streaming': isTrue(os.environ.get('streaming', False)),
            'prompt_name': os.environ.get('prompt_name', None),
            'examples': os.environ.get('examples', '')
        })
        st.session_state.cfg = cfg
        st.session_state.ex_prompt = None
        st.session_state.first_turn = True        
        example_messages = [example.strip() for example in cfg.examples.split(",")]
        st.session_state.example_messages = [em for em in example_messages if len(em)>0][:max_examples]

        st.session_state.vq = VectaraQuery(cfg.api_key, cfg.customer_id, cfg.corpus_ids, cfg.prompt_name)

    cfg = st.session_state.cfg
    vq = st.session_state.vq
    st.set_page_config(page_title=cfg.title, layout="wide")

    # left side content
    with st.sidebar:
        image = Image.open('Vectara-logo.png')
        st.markdown(f"## Welcome to {cfg.title}\n\n"
                    f"This demo uses Retrieval Augmented Generation to ask questions about {cfg.source_data_desc}\n\n")

        st.markdown("---")
        st.markdown(
            "## How this works?\n"
            "This app was built with [Vectara](https://vectara.com).\n"
            "Vectara's [Indexing API](https://docs.vectara.com/docs/api-reference/indexing-apis/indexing) was used to ingest the data into a Vectara corpus (or index).\n\n"
            "This app uses Vectara [Chat API](https://docs.vectara.com/docs/console-ui/vectara-chat-overview) to query the corpus and present the results to you, answering your question.\n\n"
        )
        st.markdown("---")
        st.image(image, width=250)

    st.markdown(f"<center> <h2> Vectara chat demo: {cfg.title} </h2> </center>", unsafe_allow_html=True)
    st.markdown(f"<center> <h4> {cfg.description} <h4> </center>", unsafe_allow_html=True)

    if "messages" not in st.session_state.keys():
        st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]


    example_container = st.empty()
    with example_container:
        if show_example_questions():
            example_container.empty()
            st.rerun()
                
    # Display chat messages
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.write(message["content"])

    # select prompt from example question or user provided input
    if st.session_state.ex_prompt:
        prompt = st.session_state.ex_prompt
    else:
        prompt = st.chat_input()
    if prompt:
        st.session_state.messages.append({"role": "user", "content": prompt})
        with st.chat_message("user"):
            st.write(prompt)
        st.session_state.ex_prompt = None
        
    # Generate a new response if last message is not from assistant
    if st.session_state.messages[-1]["role"] != "assistant":
        with st.chat_message("assistant"):
            if cfg.streaming:
                stream = generate_streaming_response(prompt) 
                response = st.write_stream(stream) 
            else:
                with st.spinner("Thinking..."):
                    response = generate_response(prompt)
                    st.write(response)
            message = {"role": "assistant", "content": response}
            st.session_state.messages.append(message)
            st.rerun()
    
if __name__ == "__main__":
    launch_bot()