|
from PIL import Image |
|
import sys |
|
import re |
|
|
|
import streamlit as st |
|
from streamlit_pills import pills |
|
from streamlit_feedback import streamlit_feedback |
|
|
|
from utils import thumbs_feedback, escape_dollars_outside_latex, send_amplitude_data |
|
|
|
from vectara_agentic.agent import AgentStatusType |
|
from agent import initialize_agent, get_agent_config |
|
|
|
initial_prompt = "How can I help you today?" |
|
|
|
def show_example_questions(): |
|
if len(st.session_state.example_messages) > 0 and st.session_state.first_turn: |
|
selected_example = pills("Queries to Try:", st.session_state.example_messages, index=None) |
|
if selected_example: |
|
st.session_state.ex_prompt = selected_example |
|
st.session_state.first_turn = False |
|
return True |
|
return False |
|
|
|
def format_log_msg(log_msg: str): |
|
max_log_msg_size = 500 |
|
return log_msg if len(log_msg) <= max_log_msg_size else log_msg[:max_log_msg_size]+'...' |
|
|
|
def agent_progress_callback(status_type: AgentStatusType, msg: str): |
|
output = f'<span style="color:blue;">{status_type.value}</span>: {msg}' |
|
st.session_state.log_messages.append(output) |
|
if 'status' in st.session_state: |
|
latest_message = '' |
|
if status_type == AgentStatusType.TOOL_CALL: |
|
match = re.search(r"'([^']*)'", msg) |
|
tool_name = match.group(1) if match else "Unknown tool" |
|
latest_message = f"Calling tool {tool_name}..." |
|
elif status_type == AgentStatusType.TOOL_OUTPUT: |
|
latest_message = "Analyzing tool output..." |
|
else: |
|
return |
|
|
|
st.session_state.status.update(label=latest_message) |
|
|
|
with st.session_state.status: |
|
for log_msg in st.session_state.log_messages: |
|
st.markdown(format_log_msg(log_msg), unsafe_allow_html=True) |
|
|
|
@st.dialog(title="Agent logs", width='large') |
|
def show_modal(): |
|
for log_msg in st.session_state.log_messages: |
|
st.markdown(format_log_msg(log_msg), unsafe_allow_html=True) |
|
|
|
async def launch_bot(): |
|
def reset(): |
|
st.session_state.messages = [{"role": "assistant", "content": initial_prompt, "avatar": "π¦"}] |
|
st.session_state.log_messages = [] |
|
st.session_state.prompt = None |
|
st.session_state.ex_prompt = None |
|
st.session_state.first_turn = True |
|
st.session_state.show_logs = False |
|
if 'agent' not in st.session_state: |
|
st.session_state.agent = initialize_agent(cfg, agent_progress_callback=agent_progress_callback) |
|
else: |
|
st.session_state.agent.clear_memory() |
|
|
|
if 'cfg' not in st.session_state: |
|
cfg = get_agent_config() |
|
st.session_state.cfg = cfg |
|
st.session_state.ex_prompt = None |
|
example_messages = [example.strip() for example in cfg.examples.split(";")] if cfg.examples else [] |
|
st.session_state.example_messages = [em for em in example_messages if len(em)>0] |
|
reset() |
|
|
|
cfg = st.session_state.cfg |
|
|
|
|
|
with st.sidebar: |
|
image = Image.open('Vectara-logo.png') |
|
st.image(image, width=175) |
|
st.markdown(f"## {cfg['demo_welcome']}") |
|
st.markdown(f"### {cfg['demo_description']}") |
|
st.divider() |
|
st.markdown(f""" |
|
**Companies included**: |
|
- Meta |
|
- Google / Alphabet |
|
- Booking Holdings |
|
- Nvidia""") |
|
|
|
|
|
st.markdown("\n\n") |
|
bc1, bc2 = st.columns([1, 1]) |
|
with bc1: |
|
if st.button('Start Over'): |
|
reset() |
|
st.rerun() |
|
with bc2: |
|
if st.button('Show Logs'): |
|
show_modal() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if "messages" not in st.session_state.keys(): |
|
reset() |
|
|
|
|
|
for message in st.session_state.messages: |
|
with st.chat_message(message["role"], avatar=message["avatar"]): |
|
st.write(message["content"]) |
|
|
|
example_container = st.empty() |
|
with example_container: |
|
if show_example_questions(): |
|
example_container.empty() |
|
st.session_state.first_turn = False |
|
st.rerun() |
|
|
|
|
|
if st.session_state.ex_prompt: |
|
prompt = st.session_state.ex_prompt |
|
else: |
|
prompt = st.chat_input() |
|
if prompt: |
|
st.session_state.messages.append({"role": "user", "content": prompt, "avatar": 'π§βπ»'}) |
|
st.session_state.prompt = prompt |
|
st.session_state.log_messages = [] |
|
st.session_state.show_logs = False |
|
with st.chat_message("user", avatar='π§βπ»'): |
|
print(f"Starting new question: {prompt}\n") |
|
st.write(prompt) |
|
st.session_state.ex_prompt = None |
|
|
|
|
|
if st.session_state.prompt: |
|
with st.chat_message("assistant", avatar='π€'): |
|
st.session_state.status = st.status('Processing...', expanded=False) |
|
response = st.session_state.agent.chat(st.session_state.prompt) |
|
res = escape_dollars_outside_latex(response.response) |
|
message = {"role": "assistant", "content": res, "avatar": 'π€'} |
|
st.session_state.messages.append(message) |
|
st.markdown(res) |
|
|
|
send_amplitude_data( |
|
user_query=st.session_state.messages[-2]["content"], |
|
bot_response=st.session_state.messages[-1]["content"], |
|
demo_name=cfg['demo_name'] |
|
) |
|
|
|
st.session_state.ex_prompt = None |
|
st.session_state.prompt = None |
|
st.session_state.first_turn = False |
|
st.rerun() |
|
|
|
|
|
if (st.session_state.messages[-1]["role"] == "assistant") & (st.session_state.messages[-1]["content"] != initial_prompt): |
|
if "feedback_key" not in st.session_state: |
|
st.session_state.feedback_key = 0 |
|
streamlit_feedback( |
|
feedback_type="thumbs", on_submit=thumbs_feedback, key=str(st.session_state.feedback_key), |
|
kwargs={"user_query": st.session_state.messages[-2]["content"], |
|
"bot_response": st.session_state.messages[-1]["content"], |
|
"demo_name": cfg["demo_name"]} |
|
) |
|
|
|
|
|
sys.stdout.flush() |
|
|