initial
Browse files
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 🐨
|
4 |
colorFrom: indigo
|
5 |
colorTo: indigo
|
@@ -7,7 +7,7 @@ sdk: docker
|
|
7 |
app_port: 8501
|
8 |
pinned: false
|
9 |
license: apache-2.0
|
10 |
-
short_description:
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: HMC Demo
|
3 |
emoji: 🐨
|
4 |
colorFrom: indigo
|
5 |
colorTo: indigo
|
|
|
7 |
app_port: 8501
|
8 |
pinned: false
|
9 |
license: apache-2.0
|
10 |
+
short_description: Ask questions about Harvard Management
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
agent.py
CHANGED
@@ -3,44 +3,54 @@ from typing import Optional
|
|
3 |
from pydantic import Field, BaseModel
|
4 |
from omegaconf import OmegaConf
|
5 |
|
6 |
-
from
|
7 |
-
from
|
8 |
|
9 |
from dotenv import load_dotenv
|
10 |
load_dotenv(override=True)
|
11 |
|
12 |
-
|
13 |
-
from vectara_agentic.tools import ToolsFactory, VectaraToolFactory
|
14 |
|
15 |
-
def create_assistant_tools(cfg):
|
16 |
|
17 |
-
class
|
18 |
query: str = Field(description="The user query.")
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
default=None,
|
21 |
-
description="The
|
22 |
-
examples=[
|
23 |
)
|
24 |
-
|
25 |
default=None,
|
26 |
-
description="The
|
27 |
-
examples=['
|
28 |
)
|
29 |
|
30 |
vec_factory = VectaraToolFactory(
|
31 |
-
vectara_api_key=cfg.
|
32 |
vectara_customer_id=cfg.customer_id,
|
33 |
-
vectara_corpus_id=cfg.
|
34 |
)
|
35 |
|
36 |
-
summarizer = 'vectara-experimental-summary-ext-2023-12-11-med-omni'
|
37 |
-
|
38 |
-
|
|
|
39 |
tool_description = """
|
40 |
Given a user query,
|
41 |
-
returns a response to a user question about
|
42 |
""",
|
43 |
-
tool_args_schema =
|
44 |
reranker = "chain", rerank_k = 100,
|
45 |
rerank_chain = [
|
46 |
{
|
@@ -49,46 +59,30 @@ def create_assistant_tools(cfg):
|
|
49 |
},
|
50 |
{
|
51 |
"type": "mmr",
|
52 |
-
"diversity_bias": 0.
|
53 |
-
"limit":
|
54 |
}
|
55 |
],
|
56 |
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.005,
|
57 |
vectara_summarizer = summarizer,
|
|
|
58 |
include_citations = True,
|
59 |
)
|
60 |
-
|
61 |
-
tools_factory = ToolsFactory()
|
62 |
-
|
63 |
-
db_tools = tools_factory.database_tools(
|
64 |
-
tool_name_prefix = "cfpb",
|
65 |
-
content_description = 'Customer complaints about five banks (Bank of America, Wells Fargo, Capital One, Chase, and CITI Bank) and geographic information (counties and zip codes)',
|
66 |
-
sql_database = SQLDatabase(create_engine('sqlite:///cfpb_database.db')),
|
67 |
-
)
|
68 |
-
|
69 |
-
return (tools_factory.standard_tools() +
|
70 |
-
tools_factory.guardrail_tools() +
|
71 |
-
db_tools +
|
72 |
-
[ask_complaints]
|
73 |
-
)
|
74 |
|
75 |
def initialize_agent(_cfg, agent_progress_callback=None):
|
76 |
-
|
77 |
-
- You are a helpful
|
78 |
-
|
79 |
-
|
80 |
-
-
|
81 |
-
- For questions about customers' complaints (the text of the complaint), use the ask_complaints tool.
|
82 |
-
You only need the query parameter to use this tool, but you can supply other parameters if provided.
|
83 |
-
Do not include the "References" section in your response.
|
84 |
-
- Never discuss politics, and always respond politely.
|
85 |
"""
|
86 |
|
87 |
agent = Agent(
|
88 |
tools=create_assistant_tools(_cfg),
|
89 |
-
topic="
|
90 |
-
custom_instructions=
|
91 |
-
agent_progress_callback=agent_progress_callback
|
92 |
)
|
93 |
agent.report()
|
94 |
return agent
|
@@ -97,11 +91,11 @@ def initialize_agent(_cfg, agent_progress_callback=None):
|
|
97 |
def get_agent_config() -> OmegaConf:
|
98 |
cfg = OmegaConf.create({
|
99 |
'customer_id': str(os.environ['VECTARA_CUSTOMER_ID']),
|
100 |
-
'
|
101 |
-
'
|
102 |
'examples': os.environ.get('QUERY_EXAMPLES', None),
|
103 |
-
'demo_name': "
|
104 |
-
'demo_welcome': "
|
105 |
-
'demo_description': "
|
106 |
})
|
107 |
return cfg
|
|
|
3 |
from pydantic import Field, BaseModel
|
4 |
from omegaconf import OmegaConf
|
5 |
|
6 |
+
from vectara_agentic.agent import Agent
|
7 |
+
from vectara_agentic.tools import VectaraToolFactory
|
8 |
|
9 |
from dotenv import load_dotenv
|
10 |
load_dotenv(override=True)
|
11 |
|
12 |
+
initial_prompt = "How can I help you today?"
|
|
|
13 |
|
14 |
+
def create_assistant_tools(cfg):
|
15 |
|
16 |
+
class QueryHMC(BaseModel):
|
17 |
query: str = Field(description="The user query.")
|
18 |
+
ticker: Optional[str] = Field(
|
19 |
+
default=None,
|
20 |
+
description="The company ticker.",
|
21 |
+
examples=['GOOG', 'META']
|
22 |
+
)
|
23 |
+
year: Optional[str] = Field(
|
24 |
+
default=None,
|
25 |
+
description="The year of the report.",
|
26 |
+
examples=[2020, 2023]
|
27 |
+
)
|
28 |
+
quarter: Optional[int] = Field(
|
29 |
default=None,
|
30 |
+
description="The quarter of the report.",
|
31 |
+
examples=[1, 2, 3, 4]
|
32 |
)
|
33 |
+
filing_type: Optional[str] = Field(
|
34 |
default=None,
|
35 |
+
description="The type of filing.",
|
36 |
+
examples=['10K', '10Q']
|
37 |
)
|
38 |
|
39 |
vec_factory = VectaraToolFactory(
|
40 |
+
vectara_api_key=cfg.api_key,
|
41 |
vectara_customer_id=cfg.customer_id,
|
42 |
+
vectara_corpus_id=cfg.corpus_id
|
43 |
)
|
44 |
|
45 |
+
#summarizer = 'vectara-experimental-summary-ext-2023-12-11-med-omni'
|
46 |
+
summarizer = 'vectara-summary-ext-24-05-med-omni'
|
47 |
+
ask_hmc = vec_factory.create_rag_tool(
|
48 |
+
tool_name = "ask_hmc",
|
49 |
tool_description = """
|
50 |
Given a user query,
|
51 |
+
returns a response to a user question about fund management companies.
|
52 |
""",
|
53 |
+
tool_args_schema = QueryHMC,
|
54 |
reranker = "chain", rerank_k = 100,
|
55 |
rerank_chain = [
|
56 |
{
|
|
|
59 |
},
|
60 |
{
|
61 |
"type": "mmr",
|
62 |
+
"diversity_bias": 0.05,
|
63 |
+
"limit": 20
|
64 |
}
|
65 |
],
|
66 |
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.005,
|
67 |
vectara_summarizer = summarizer,
|
68 |
+
summary_num_results = 10,
|
69 |
include_citations = True,
|
70 |
)
|
71 |
+
return [ask_hmc]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
def initialize_agent(_cfg, agent_progress_callback=None):
|
74 |
+
bot_instructions = """
|
75 |
+
- You are a helpful assistant, with expertise in management of public company stock portfolios.
|
76 |
+
- Use the 'ask_hmc' tool to answer questions about public company performance, risks, and other financial metrics.
|
77 |
+
- Use the year, quarter, filing_type and ticker arguments to the 'ask_hmc' tool to get more specific answers.
|
78 |
+
- Note that 10Q reports exist for quarters 1, 2, 3 and for the 4th quarter there is a 10K report.
|
|
|
|
|
|
|
|
|
79 |
"""
|
80 |
|
81 |
agent = Agent(
|
82 |
tools=create_assistant_tools(_cfg),
|
83 |
+
topic="Endowment fund management",
|
84 |
+
custom_instructions=bot_instructions,
|
85 |
+
agent_progress_callback=agent_progress_callback,
|
86 |
)
|
87 |
agent.report()
|
88 |
return agent
|
|
|
91 |
def get_agent_config() -> OmegaConf:
|
92 |
cfg = OmegaConf.create({
|
93 |
'customer_id': str(os.environ['VECTARA_CUSTOMER_ID']),
|
94 |
+
'corpus_id': str(os.environ['VECTARA_CORPUS_ID']),
|
95 |
+
'api_key': str(os.environ['VECTARA_API_KEY']),
|
96 |
'examples': os.environ.get('QUERY_EXAMPLES', None),
|
97 |
+
'demo_name': "HMC Demo",
|
98 |
+
'demo_welcome': "HMC Assistant.",
|
99 |
+
'demo_description': "AI assistant For Harvard Management Company.",
|
100 |
})
|
101 |
return cfg
|
app.py
CHANGED
@@ -1,14 +1,9 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
import streamlit as st
|
4 |
from st_app import launch_bot
|
|
|
5 |
|
6 |
import nest_asyncio
|
7 |
import asyncio
|
8 |
-
import uuid
|
9 |
-
|
10 |
-
import sqlite3
|
11 |
-
from datasets import load_dataset
|
12 |
|
13 |
# Setup for HTTP API Calls to Amplitude Analytics
|
14 |
if 'device_id' not in st.session_state:
|
@@ -17,50 +12,7 @@ if 'device_id' not in st.session_state:
|
|
17 |
if "feedback_key" not in st.session_state:
|
18 |
st.session_state.feedback_key = 0
|
19 |
|
20 |
-
def setup_db():
|
21 |
-
db_path = 'cfpb_database.db'
|
22 |
-
conn = sqlite3.connect(db_path)
|
23 |
-
cursor = conn.cursor()
|
24 |
-
|
25 |
-
with st.spinner("Loading data... Please wait..."):
|
26 |
-
def table_populated() -> bool:
|
27 |
-
cursor.execute("SELECT name FROM sqlite_master WHERE type='table' AND name='cfpb_complaints'")
|
28 |
-
result = cursor.fetchone()
|
29 |
-
if not result:
|
30 |
-
return False
|
31 |
-
return True
|
32 |
-
|
33 |
-
if table_populated():
|
34 |
-
print("Database table already populated, skipping setup")
|
35 |
-
conn.close()
|
36 |
-
return
|
37 |
-
else:
|
38 |
-
print("Populating database table")
|
39 |
-
|
40 |
-
# Execute the SQL commands to create the database table
|
41 |
-
with open('create_table.sql', 'r') as sql_file:
|
42 |
-
sql_script = sql_file.read()
|
43 |
-
cursor.executescript(sql_script)
|
44 |
-
|
45 |
-
hf_token = os.getenv('HF_TOKEN')
|
46 |
-
|
47 |
-
# Load data into cfpb_complaints table
|
48 |
-
df = load_dataset("vectara/cfpb-complaints", data_files="cfpb_complaints.csv", token=hf_token)['train'].to_pandas()
|
49 |
-
df.to_sql('cfpb_complaints', conn, if_exists='replace', index=False)
|
50 |
-
|
51 |
-
df = load_dataset("vectara/cfpb-complaints", data_files="cfpb_county_populations.csv", token=hf_token)['train'].to_pandas()
|
52 |
-
df.to_sql('cfpb_county_populations', conn, if_exists='replace', index=False)
|
53 |
-
|
54 |
-
df = load_dataset("vectara/cfpb-complaints", data_files="cfpb_zip_to_county.csv", token=hf_token)['train'].to_pandas()
|
55 |
-
df.to_sql('cfpb_zip_to_county', conn, if_exists='replace', index=False)
|
56 |
-
|
57 |
-
# Commit changes and close connection
|
58 |
-
conn.commit()
|
59 |
-
conn.close()
|
60 |
-
|
61 |
if __name__ == "__main__":
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
nest_asyncio.apply()
|
66 |
-
asyncio.run(launch_bot())
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from st_app import launch_bot
|
3 |
+
import uuid
|
4 |
|
5 |
import nest_asyncio
|
6 |
import asyncio
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Setup for HTTP API Calls to Amplitude Analytics
|
9 |
if 'device_id' not in st.session_state:
|
|
|
12 |
if "feedback_key" not in st.session_state:
|
13 |
st.session_state.feedback_key = 0
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
if __name__ == "__main__":
|
16 |
+
st.set_page_config(page_title="Harvard Management Company Assistant", layout="wide")
|
17 |
+
nest_asyncio.apply()
|
18 |
+
asyncio.run(launch_bot())
|
|
|
|
requirements.txt
CHANGED
@@ -1,10 +1,9 @@
|
|
1 |
omegaconf==2.3.0
|
2 |
python-dotenv==1.0.1
|
3 |
-
streamlit==1.
|
4 |
streamlit_pills==0.3.0
|
5 |
-
|
|
|
6 |
langdetect==1.0.9
|
7 |
langcodes==3.4.0
|
8 |
-
|
9 |
-
uuid==1.30
|
10 |
-
vectara-agentic==0.1.19
|
|
|
1 |
omegaconf==2.3.0
|
2 |
python-dotenv==1.0.1
|
3 |
+
streamlit==1.41.1
|
4 |
streamlit_pills==0.3.0
|
5 |
+
streamlit_feedback==0.1.3
|
6 |
+
uuid==1.30
|
7 |
langdetect==1.0.9
|
8 |
langcodes==3.4.0
|
9 |
+
vectara-agentic==0.1.20
|
|
|
|
st_app.py
CHANGED
@@ -91,12 +91,12 @@ async def launch_bot():
|
|
91 |
if st.button('Show Logs'):
|
92 |
show_modal()
|
93 |
|
94 |
-
st.divider()
|
95 |
-
st.markdown(
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
)
|
100 |
|
101 |
if "messages" not in st.session_state.keys():
|
102 |
reset()
|
|
|
91 |
if st.button('Show Logs'):
|
92 |
show_modal()
|
93 |
|
94 |
+
# st.divider()
|
95 |
+
# st.markdown(
|
96 |
+
# "## How this works?\n"
|
97 |
+
# "This app was built with [Vectara](https://vectara.com).\n\n"
|
98 |
+
# "It demonstrates the use of Agentic RAG functionality with Vectara"
|
99 |
+
# )
|
100 |
|
101 |
if "messages" not in st.session_state.keys():
|
102 |
reset()
|
utils.py
CHANGED
@@ -31,8 +31,11 @@ def thumbs_feedback(feedback, **kwargs):
|
|
31 |
|
32 |
def send_amplitude_data(user_query, bot_response, demo_name, feedback=None):
|
33 |
# Send query and response to Amplitude Analytics
|
|
|
|
|
|
|
34 |
data = {
|
35 |
-
"api_key":
|
36 |
"events": [{
|
37 |
"device_id": st.session_state.device_id,
|
38 |
"event_type": "submitted_query",
|
|
|
31 |
|
32 |
def send_amplitude_data(user_query, bot_response, demo_name, feedback=None):
|
33 |
# Send query and response to Amplitude Analytics
|
34 |
+
amplitude_token = os.environ.get('AMPLITUDE_TOKEN', None)
|
35 |
+
if amplitude_token is None:
|
36 |
+
return
|
37 |
data = {
|
38 |
+
"api_key": amplitude_token,
|
39 |
"events": [{
|
40 |
"device_id": st.session_state.device_id,
|
41 |
"event_type": "submitted_query",
|