Spaces: Running
Running
File size: 10,636 Bytes
b5e0c7e 25b67f4 a75f490 a6a85af 25b67f4 a75f490 b5e0c7e e1452a4 b5e0c7e ece9872 b5e0c7e be67d35 b5e0c7e be67d35 b5e0c7e 25b67f4 e1452a4 25b67f4 e1452a4 25b67f4 5b2b247 72e1546 ed18c6a b5e0c7e 5b2b247 b5e0c7e 308fc11 6960aa1 b5e0c7e 5b2b247 72e1546 ed18c6a 72e1546 b5e0c7e ed18c6a b5e0c7e 25b67f4 b5e0c7e a441318 5b2b247 b5e0c7e e1452a4 e7ab0c3 ed18c6a e1452a4 be67d35 ed18c6a 9f650ed 91ec79e d015953 91ec79e ed18c6a a6a85af e1452a4 b5e0c7e 25b67f4 ed18c6a 25b67f4 a6a85af b5e0c7e 91ec79e b5e0c7e a6a85af b5e0c7e a6a85af b5e0c7e ed18c6a b5e0c7e ed18c6a b5e0c7e 308fc11 b5e0c7e dea99b8 b5e0c7e ed18c6a 25b67f4 b5e0c7e 25b67f4 b5e0c7e ed18c6a b5e0c7e a6a85af b5e0c7e a6a85af b5e0c7e ed18c6a b5e0c7e a6a85af ed18c6a b5e0c7e ed18c6a b5e0c7e ed18c6a b5e0c7e ed18c6a a6a85af ed18c6a 25b67f4 d015953 ed18c6a 25b67f4 b5e0c7e e1452a4 b5e0c7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import os
from PIL import Image
import sys
import pandas as pd
import requests
from omegaconf import OmegaConf
import streamlit as st
from streamlit_pills import pills
from dotenv import load_dotenv
load_dotenv(override=True)
from pydantic import Field, BaseModel
from vectara_agent.agent import Agent, AgentStatusType
from vectara_agent.tools import ToolsFactory
tickers = {
"AAPL": "Apple Computer",
"GOOG": "Google",
"AMZN": "Amazon",
"SNOW": "Snowflake",
"TEAM": "Atlassian",
"TSLA": "Tesla",
"NVDA": "Nvidia",
"MSFT": "Microsoft",
"AMD": "Advanced Micro Devices",
"INTC": "Intel",
"NFLX": "Netflix",
}
years = [2020, 2021, 2022, 2023, 2024]
initial_prompt = "How can I help you today?"
def create_tools(cfg):
def get_company_info() -> list[str]:
"""
Returns a dictionary of companies you can query about. Always check this before using any other tool.
The output is a dictionary of valid ticker symbols mapped to company names.
You can use this to identify the companies you can query about, and their ticker information.
"""
return tickers
def get_valid_years() -> list[str]:
"""
Returns a list of the years for which financial reports are available.
Always check this before using any other tool.
"""
return years
# Tool to get the income statement for a given company and year using the FMP API
def get_income_statement(
ticker=Field(description="the ticker symbol of the company."),
year=Field(description="the year for which to get the income statement."),
) -> str:
"""
Get the income statement for a given company and year using the FMP (https://financialmodelingprep.com) API.
Returns a dictionary with the income statement data. All data is in USD, but you can convert it to more compact form like K, M, B.
"""
fmp_api_key = os.environ.get("FMP_API_KEY", None)
if fmp_api_key is None:
return "FMP_API_KEY environment variable not set. This tool does not work."
url = f"https://financialmodelingprep.com/api/v3/income-statement/{ticker}?apikey={fmp_api_key}"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
income_statement = pd.DataFrame(data)
income_statement["date"] = pd.to_datetime(income_statement["date"])
income_statement_specific_year = income_statement[
income_statement["date"].dt.year == int(year)
]
values_dict = income_statement_specific_year.to_dict(orient="records")[0]
return f"Financial results: {', '.join([f'{key}: {value}' for key, value in values_dict.items() if key not in ['date', 'cik', 'link', 'finalLink']])}"
else:
return "FMP API returned error. This tool does not work."
class QueryTranscriptsArgs(BaseModel):
query: str = Field(..., description="The user query.")
year: int = Field(..., description=f"The year. An integer between {min(years)} and {max(years)}.")
ticker: str = Field(..., description=f"The company ticker. Must be a valid ticket symbol from the list {tickers.keys()}.")
tools_factory = ToolsFactory(vectara_api_key=cfg.api_key,
vectara_customer_id=cfg.customer_id,
vectara_corpus_id=cfg.corpus_id)
ask_transcripts = tools_factory.create_rag_tool(
tool_name = "ask_transcripts",
tool_description = """
Given a company name and year, response to a user question about the company, based on analyst call transcripts about the company's financial reports for that year.
You can ask this tool any question about the compaany including risks, opportunities, financial performance, competitors and more.
""",
tool_args_schema = QueryTranscriptsArgs,
reranker = "multilingual_reranker_v1", rerank_k = 100,
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.005,
summary_num_results = 10,
vectara_summarizer = 'vectara-summary-ext-24-05-med-omni',
include_citations = False,
)
return (tools_factory.get_tools(
[
get_company_info,
get_valid_years,
get_income_statement,
]
) +
tools_factory.standard_tools() +
tools_factory.financial_tools() +
tools_factory.guardrail_tools() +
[ask_transcripts]
)
def initialize_agent(_cfg):
if 'agent' in st.session_state:
return st.session_state.agent
financial_bot_instructions = """
- You are a helpful financial assistant, with expertise in financial reporting, in conversation with a user.
- Never discuss politics, and always respond politely.
- Respond in a compact format by using appropriate units of measure (e.g., K for thousands, M for millions, B for billions).
Do not report the same number twice (e.g. $100K and 100,000 USD).
- Always check the get_company_info and get_valid_years tools to validate company and year are valid.
- When querying a tool for a numeric value or KPI, use a concise and non-ambiguous description of what you are looking for.
- If you calculate a metric, make sure you have all the necessary information to complete the calculation. Don't guess.
"""
def update_func(status_type: AgentStatusType, msg: str):
if status_type != AgentStatusType.AGENT_UPDATE:
output = f"{status_type.value} - {msg}"
st.session_state.log_messages.append(output)
agent = Agent(
tools=create_tools(_cfg),
topic="10-K annual financial reports",
custom_instructions=financial_bot_instructions,
update_func=update_func
)
return agent
def toggle_logs():
st.session_state.show_logs = not st.session_state.show_logs
def show_example_questions():
if len(st.session_state.example_messages) > 0 and st.session_state.first_turn:
selected_example = pills("Queries to Try:", st.session_state.example_messages, index=None)
if selected_example:
st.session_state.ex_prompt = selected_example
st.session_state.first_turn = False
return True
return False
def launch_bot():
def reset():
st.session_state.messages = [{"role": "assistant", "content": initial_prompt, "avatar": "π¦"}]
st.session_state.thinking_message = "Agent at work..."
st.session_state.log_messages = []
st.session_state.prompt = None
st.session_state.show_logs = False
st.session_state.first_turn = True
st.set_page_config(page_title="Financial Assistant", layout="wide")
if 'cfg' not in st.session_state:
cfg = OmegaConf.create({
'customer_id': str(os.environ['VECTARA_CUSTOMER_ID']),
'corpus_id': str(os.environ['VECTARA_CORPUS_ID']),
'api_key': str(os.environ['VECTARA_API_KEY']),
'examples': os.environ.get('QUERY_EXAMPLES', None)
})
st.session_state.cfg = cfg
st.session_state.ex_prompt = None
example_messages = [example.strip() for example in cfg.examples.split(",")] if cfg.examples else []
st.session_state.example_messages = [em for em in example_messages if len(em)>0]
reset()
cfg = st.session_state.cfg
if 'agent' not in st.session_state:
st.session_state.agent = initialize_agent(cfg)
# left side content
with st.sidebar:
image = Image.open('Vectara-logo.png')
st.image(image, width=175)
st.markdown("## Welcome to the financial assistant demo.\n\n\n")
companies = ", ".join(tickers.values())
st.markdown(
f"This assistant can help you with any questions about the financials of several companies:\n\n **{companies}**.\n"
)
st.markdown("\n\n")
bc1, _ = st.columns([1, 1])
with bc1:
if st.button('Start Over'):
reset()
st.markdown("---")
st.markdown(
"## How this works?\n"
"This app was built with [Vectara](https://vectara.com).\n\n"
"It demonstrates the use of Agentic RAG functionality with Vectara"
)
st.markdown("---")
if "messages" not in st.session_state.keys():
reset()
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"], avatar=message["avatar"]):
st.write(message["content"])
example_container = st.empty()
with example_container:
if show_example_questions():
example_container.empty()
st.rerun()
# User-provided prompt
if st.session_state.ex_prompt:
prompt = st.session_state.ex_prompt
else:
prompt = st.chat_input()
if prompt:
st.session_state.messages.append({"role": "user", "content": prompt, "avatar": 'π§βπ»'})
st.session_state.prompt = prompt # Save the prompt in session state
st.session_state.log_messages = []
st.session_state.show_logs = False
with st.chat_message("user", avatar='π§βπ»'):
print(f"Starting new question: {prompt}\n")
st.write(prompt)
st.session_state.ex_prompt = None
# Generate a new response if last message is not from assistant
if st.session_state.prompt:
with st.chat_message("assistant", avatar='π€'):
with st.spinner(st.session_state.thinking_message):
res = st.session_state.agent.chat(st.session_state.prompt)
res = res.replace('$', '\\$') # escape dollar sign for markdown
message = {"role": "assistant", "content": res, "avatar": 'π€'}
st.session_state.messages.append(message)
st.markdown(res)
st.session_state.ex_prompt = None
st.session_state.prompt = None
st.rerun()
log_placeholder = st.empty()
with log_placeholder.container():
if st.session_state.show_logs:
st.button("Hide Logs", on_click=toggle_logs)
for msg in st.session_state.log_messages:
st.text(msg)
else:
if len(st.session_state.log_messages) > 0:
st.button("Show Logs", on_click=toggle_logs)
sys.stdout.flush()
if __name__ == "__main__":
launch_bot()
|