Spaces:
Running
Running
File size: 5,056 Bytes
49b0a2d 4f8926e e6d4ed8 49b0a2d 818f521 49b0a2d c9b5ada 49b0a2d f153e2c 49b0a2d 9e67862 49b0a2d c9b5ada 49b0a2d 382520d 49b0a2d f153e2c 49b0a2d 9e67862 49b0a2d e6d4ed8 c9b5ada 49b0a2d 3eafa3a 14aa01b f77260d 4f8926e 3eafa3a c9b5ada 3eafa3a 49b0a2d 84357ab 49b0a2d 84357ab 49b0a2d 4f8926e 49b0a2d 31be0ff 49b0a2d 35cdc9b 49b0a2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import os
from typing import Optional
from pydantic import Field, BaseModel
from omegaconf import OmegaConf
from llama_index.core.utilities.sql_wrapper import SQLDatabase
from sqlalchemy import create_engine
from dotenv import load_dotenv
load_dotenv(override=True)
from vectara_agentic.agent import Agent
from vectara_agentic.tools import ToolsFactory, VectaraToolFactory
def create_assistant_tools(cfg):
class QueryElectricCars(BaseModel):
query: str = Field(description="The user query.")
vec_factory_1 = VectaraToolFactory(vectara_api_key=cfg.api_keys[0],
vectara_customer_id=cfg.customer_id,
vectara_corpus_id=cfg.corpus_ids[0])
summarizer = 'vectara-experimental-summary-ext-2023-12-11-med-omni'
ask_vehicles = vec_factory_1.create_rag_tool(
tool_name = "ask_vehicles",
tool_description = """
Given a user query,
returns a response to a user question about electric vehicles.
""",
tool_args_schema = QueryElectricCars,
reranker = "chain", rerank_k = 100,
rerank_chain = [
{
"type": "slingshot",
"cutoff": 0.2
},
{
"type": "mmr",
"diversity_bias": 0.1
}
],
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.005,
summary_num_results = 5,
vectara_summarizer = summarizer,
include_citations = False,
)
vec_factory_2 = VectaraToolFactory(vectara_api_key=cfg.api_keys[1],
vectara_customer_id=cfg.customer_id,
vectara_corpus_id=cfg.corpus_ids[1])
class QueryEVLaws(BaseModel):
query: str = Field(description="The user query")
state: Optional[str] = Field(default=None,
description="The two digit state code. Optional.",
examples=['CA', 'US', 'WA'])
policy_type: Optional[str] = Field(default=None,
description="The type of policy. Optional",
examples = ['Laws and Regulations', 'State Incentives', 'Incentives', 'Utility / Private Incentives', 'Programs'])
ask_policies = vec_factory_2.create_rag_tool(
tool_name = "ask_policies",
tool_description = """
Given a user query,
returns a response to a user question about electric vehicles incentives and regulations, in the United States.
You can ask this tool any question about laws passed by states or the federal government related to electric vehicles.
""",
tool_args_schema = QueryEVLaws,
reranker = "chain", rerank_k = 100,
rerank_chain = [
{
"type": "slingshot",
"cutoff": 0.2
},
{
"type": "mmr",
"diversity_bias": 0.1
}
],
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.005,
summary_num_results = 10,
vectara_summarizer = summarizer,
include_citations = False,
)
tools_factory = ToolsFactory()
db_tools = tools_factory.database_tools(
tool_name_prefix = "ev",
content_description = 'Electric Vehicles in the state of Washington and other population information',
sql_database = SQLDatabase(create_engine('sqlite:///ev_database.db')),
)
return (tools_factory.standard_tools() +
tools_factory.guardrail_tools() +
db_tools +
[ask_vehicles, ask_policies]
)
def initialize_agent(_cfg, agent_progress_callback=None):
electric_vehicle_bot_instructions = """
- You are a helpful research assistant, with expertise in electric vehicles, in conversation with a user.
- Never discuss politics, and always respond politely.
"""
agent = Agent(
tools=create_assistant_tools(_cfg),
topic="Electric vehicles in the United States",
custom_instructions=electric_vehicle_bot_instructions,
agent_progress_callback=agent_progress_callback
)
agent.report()
return agent
def get_agent_config() -> OmegaConf:
cfg = OmegaConf.create({
'customer_id': str(os.environ['VECTARA_CUSTOMER_ID']),
'corpus_ids': str(os.environ['VECTARA_CORPUS_IDS']).split(','),
'api_keys': str(os.environ['VECTARA_API_KEYS']).split(','),
'examples': os.environ.get('QUERY_EXAMPLES', None),
'demo_name': "ev-assistant",
'demo_welcome': "Welcome to the EV Assistant demo.",
'demo_description': "This assistant can help you learn about electric vehicles in the United States, including how they work, the advantages of purchasing them, and recent trends based on data in the state of Washington.",
})
return cfg
|