Spaces:
Running
Running
File size: 9,782 Bytes
2fb0169 4792c87 152dfa1 941e6a0 2fb0169 36aeeec 941e6a0 152dfa1 2fb0169 1770a97 2fb0169 75c6666 2fb0169 3201760 2fb0169 c9767eb 941e6a0 c9767eb 941e6a0 c9767eb 941e6a0 c9767eb 941e6a0 c9767eb 941e6a0 4792c87 941e6a0 4792c87 2fb0169 941e6a0 2fb0169 71a34b2 2fb0169 941e6a0 c9767eb 941e6a0 2fb0169 cfe1e0a a839174 cfe1e0a 2fb0169 4a4855c 2fb0169 4792c87 2fb0169 941e6a0 2fb0169 941e6a0 2fb0169 71a34b2 4792c87 941e6a0 2fb0169 941e6a0 2fb0169 adf13ff 2fb0169 b8958bb 75c6666 2fb0169 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import os
import pandas as pd
import requests
from functools import lru_cache
from pydantic import Field, BaseModel
from typing import Any, Optional
from omegaconf import OmegaConf
from vectara_agentic.agent import Agent
from vectara_agentic.tools import ToolsFactory, VectaraToolFactory
from vectara_agentic.agent_config import AgentConfig
from vectara_agentic.sub_query_workflow import SubQuestionQueryWorkflow
from dotenv import load_dotenv
load_dotenv(override=True)
tickers = {
"C": "Citigroup",
"COF": "Capital One",
"JPM": "JPMorgan Chase",
"AAPL": "Apple Computer",
"GOOG": "Google",
"AMZN": "Amazon",
"SNOW": "Snowflake",
"TEAM": "Atlassian",
"TSLA": "Tesla",
"NVDA": "Nvidia",
"MSFT": "Microsoft",
"AMD": "Advanced Micro Devices",
"INTC": "Intel",
"NFLX": "Netflix",
"STT": "State Street",
"BK": "Bank of New York Mellon",
}
years = range(2015, 2025)
initial_prompt = "How can I help you today?"
# Tool to get the income statement for a given company and year using the FMP API
@lru_cache(maxsize=256)
def fmp_income_statement(
ticker: str = Field(description="the ticker symbol of the company.", examples=["AAPL", "GOOG", "AMZN"]),
year: int = Field(description="the year for which to get the income statement.", examples=[2020, 2021, 2022]),
) -> str:
"""
Get the income statement for a given company and year using the FMP (https://financialmodelingprep.com) API.
Args:
ticker (str): the ticker symbol of the company.
year (int): the year for which to get the income statement.
Returns:
A dictionary with the income statement data.
All data is in USD, but you can convert it to more compact form like K, M, B.
"""
if ticker not in tickers or year not in years:
return "Invalid ticker or year. Please call this tool with a valid company ticker and year."
fmp_api_key = os.environ.get("FMP_API_KEY", None)
if fmp_api_key is None:
return "FMP_API_KEY environment variable not set. This tool does not work."
url = f"https://financialmodelingprep.com/api/v3/income-statement/{ticker}?apikey={fmp_api_key}"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
income_statement = pd.DataFrame(data)
if len(income_statement) == 0 or "date" not in income_statement.columns:
return "No data found for the given ticker symbol."
income_statement["date"] = pd.to_datetime(income_statement["date"])
income_statement_specific_year = income_statement[
income_statement["date"].dt.year == int(year)
]
values_dict = income_statement_specific_year.to_dict(orient="records")[0]
return f"Financial results: {', '.join([f'{key}={value}' for key, value in values_dict.items() if key not in ['date', 'cik', 'link', 'finalLink']])}"
return f"FMP API returned error {response.status_code}. This tool does not work."
def get_company_info() -> list[str]:
"""
Returns a dictionary of companies you can query about. Always check this before using any other tool.
The output is a dictionary of valid ticker symbols mapped to company names.
You can use this to identify the companies you can query about, and their ticker information.
"""
return tickers
def get_valid_years() -> list[str]:
"""
Returns a list of the years for which financial reports are available.
Always check this before using any other tool.
"""
return years
class AgentTools:
def __init__(self, _cfg, agent_config):
self.tools_factory = ToolsFactory()
self.agent_config = agent_config
self.cfg = _cfg
self.vec_factory = VectaraToolFactory(vectara_api_key=_cfg.api_key,
vectara_corpus_key=_cfg.corpus_key)
def get_tools(self):
class QueryTranscriptsArgs(BaseModel):
query: str = Field(..., description="The user query, always in the form of a question", examples=["what are the risks reported?", "who are the competitors?"])
year: int | str = Field(
default=None,
description=f"The year this query relates to. An integer between {min(years)} and {max(years)} or a string specifying a condition on the year",
examples=[2020, '>2021', '<2023', '>=2021', '<=2023', '[2021, 2023]', '[2021, 2023)']
)
ticker: str = Field(..., description=f"The company ticker this query relates to. Must be a valid ticket symbol from the list {list(tickers.keys())}.")
vec_factory = VectaraToolFactory(vectara_api_key=self.cfg.api_key,
vectara_corpus_key=self.cfg.corpus_key)
summarizer = 'vectara-summary-table-md-query-ext-jan-2025-gpt-4o'
ask_transcripts = vec_factory.create_rag_tool(
tool_name = "ask_transcripts",
tool_description = """
Given a company name and year, responds to a user question about the company, based on analyst call transcripts about the company's financial reports for that year.
You can ask this tool any question about the company including risks, opportunities, financial performance, competitors and more.
""",
tool_args_schema = QueryTranscriptsArgs,
reranker = "multilingual_reranker_v1", rerank_k = 100, rerank_cutoff = 0.1,
n_sentences_before = 2, n_sentences_after = 4, lambda_val = 0.005,
summary_num_results = 15,
vectara_summarizer = summarizer,
include_citations = True,
verbose=False,
)
class SearchTranscriptsArgs(BaseModel):
query: str = Field(..., description="The user query, always in the form of a question", examples=["what are the risks reported?", "who are the competitors?"])
top_k: int = Field(..., description="The number of results to return.")
year: int | str = Field(
default=None,
description=f"The year this query relates to. An integer between {min(years)} and {max(years)} or a string specifying a condition on the year",
examples=[2020, '>2021', '<2023', '>=2021', '<=2023', '[2021, 2023]', '[2021, 2023)']
)
ticker: str = Field(..., description=f"The company ticker this query relates to. Must be a valid ticket symbol from the list {list(tickers.keys())}.")
search_transcripts = vec_factory.create_search_tool(
tool_name = "search_transcripts",
tool_description = """
Given a company name and year, and a user query, retrieves relevant documents about the company.
""",
tool_args_schema = SearchTranscriptsArgs,
reranker = "multilingual_reranker_v1", rerank_k = 100,
lambda_val = 0.005,
verbose=False
)
tools_factory = ToolsFactory()
return (
[tools_factory.create_tool(tool) for tool in
[
get_company_info,
get_valid_years,
fmp_income_statement,
]
] +
[ask_transcripts, search_transcripts]
)
def initialize_agent(_cfg, agent_progress_callback=None):
financial_bot_instructions = """
- You are a helpful financial assistant, with expertise in financial reporting, in conversation with a user.
- Use the 'fmp_income_statement' tool (with the company ticker and year) to obtain financial data.
- Always check the 'get_company_info' and 'get_valid_years' tools to validate company and year are valid.
- Use the 'ask_transcripts' tool to answer most questions about the company's financial performance, risks, opportunities, strategy, competitors, and more.
- Respond in a compact format by using appropriate units of measure (e.g., K for thousands, M for millions, B for billions).
Do not report the same number twice (e.g. $100K and 100,000 USD).
- Do not include URLs unless they are provided in the output of a tool response and are valid URLs.
Ignore references or citations in the 'ask_transcripts' tool output if they have an empty URL (for example "[2]()").
- When querying a tool for a numeric value or KPI, use a concise and non-ambiguous description of what you are looking for.
- If you calculate a metric, make sure you have all the necessary information to complete the calculation. Don't guess.
- Your response should not be in markdown format.
"""
def query_logging(query: str, response: str):
print(f"Logging query={query}, response={response}")
agent_config = AgentConfig()
agent = Agent(
tools=AgentTools(_cfg, agent_config).get_tools(),
topic="Financial data, annual reports and 10-K filings",
custom_instructions=financial_bot_instructions,
agent_progress_callback=agent_progress_callback,
query_logging_callback=query_logging,
verbose=True,
#workflow_cls=SubQuestionQueryWorkflow,
)
agent.report()
return agent
def get_agent_config() -> OmegaConf:
companies = ", ".join(tickers.values())
cfg = OmegaConf.create({
'corpus_key': str(os.environ['VECTARA_CORPUS_KEY']),
'api_key': str(os.environ['VECTARA_API_KEY']),
'examples': os.environ.get('QUERY_EXAMPLES', None),
'demo_name': "finance-chat",
'demo_welcome': "Financial Assistant demo.",
'demo_description': f"This assistant can help you with any questions about the financials of several companies:\n\n **{companies}**.\n"
})
return cfg
|