Spaces:
Running
Running
File size: 7,385 Bytes
6db8557 71a34b2 6db8557 817058a 71a34b2 941e6a0 71a34b2 4792c87 71a34b2 4792c87 71a34b2 817058a 71a34b2 817058a 71a34b2 4792c87 71a34b2 817058a 6db8557 71a34b2 6db8557 71a34b2 6db8557 71a34b2 6db8557 71a34b2 4792c87 941e6a0 4792c87 6db8557 71a34b2 6db8557 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
from PIL import Image
import sys
import re
import streamlit as st
from streamlit_pills import pills
from streamlit_feedback import streamlit_feedback
from utils import thumbs_feedback, escape_dollars_outside_latex, send_amplitude_data
from vectara_agentic.agent import AgentStatusType
from agent import initialize_agent, get_agent_config
initial_prompt = "How can I help you today?"
def format_log_msg(log_msg: str):
max_log_msg_size = 500
return log_msg if len(log_msg) <= max_log_msg_size else log_msg[:max_log_msg_size]+'...'
def agent_progress_callback(status_type: AgentStatusType, msg: str):
output = f'<span style="color:blue;">{status_type.value}</span>: {msg}'
if "log_messages" not in st.session_state:
st.session_state.log_messages = [output]
else:
st.session_state.log_messages.append(output)
st.session_state.log_messages.append(output)
if 'status' in st.session_state:
latest_message = ''
if status_type == AgentStatusType.TOOL_CALL:
match = re.search(r"'([^']*)'", msg)
tool_name = match.group(1) if match else "Unknown tool"
latest_message = f"Calling tool {tool_name}..."
elif status_type == AgentStatusType.TOOL_OUTPUT:
latest_message = "Analyzing tool output..."
elif status_type == AgentStatusType.AGENT_UPDATE:
if "Thought:" in msg:
latest_message = "Thinking..."
else:
latest_message = "Updating agent..."
else:
print(f"callback with {status_type} and {msg}")
return
st.session_state.status.update(label=latest_message)
with st.session_state.status:
for log_msg in st.session_state.log_messages:
st.markdown(format_log_msg(log_msg), unsafe_allow_html=True)
def show_example_questions():
if len(st.session_state.example_messages) > 0 and st.session_state.first_turn:
selected_example = pills("Queries to Try:", st.session_state.example_messages, index=None)
if selected_example:
st.session_state.ex_prompt = selected_example
st.session_state.first_turn = False
return True
return False
@st.dialog(title="Agent logs", width='large')
def show_modal():
for log_msg in st.session_state.log_messages:
st.markdown(format_log_msg(log_msg), unsafe_allow_html=True)
async def launch_bot():
def reset():
st.session_state.messages = [{"role": "assistant", "content": initial_prompt, "avatar": "π¦"}]
st.session_state.log_messages = []
st.session_state.prompt = None
st.session_state.ex_prompt = None
st.session_state.first_turn = True
st.session_state.show_logs = False
if 'agent' not in st.session_state:
st.session_state.agent = initialize_agent(cfg, agent_progress_callback=agent_progress_callback)
else:
st.session_state.agent.clear_memory()
if 'cfg' not in st.session_state:
cfg = get_agent_config()
st.session_state.cfg = cfg
st.session_state.ex_prompt = None
example_messages = [example.strip() for example in cfg.examples.split(";")] if cfg.examples else []
st.session_state.example_messages = [em for em in example_messages if len(em)>0]
reset()
cfg = st.session_state.cfg
# left side content
with st.sidebar:
image = Image.open('Vectara-logo.png')
st.image(image, width=175)
st.markdown(f"## {cfg['demo_welcome']}")
st.markdown(f"{cfg['demo_description']}")
st.markdown("\n\n")
bc1, bc2 = st.columns([1, 1])
with bc1:
if st.button('Start Over'):
reset()
st.rerun()
with bc2:
if st.button('Show Logs'):
show_modal()
st.divider()
st.markdown(
"## How this works?\n"
"This app was built with [Vectara](https://vectara.com).\n\n"
"It demonstrates the use of Agentic RAG functionality with Vectara"
)
if "messages" not in st.session_state.keys():
reset()
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"], avatar=message["avatar"]):
st.write(message["content"])
example_container = st.empty()
with example_container:
if show_example_questions():
example_container.empty()
st.session_state.first_turn = False
st.rerun()
# User-provided prompt
if st.session_state.ex_prompt:
prompt = st.session_state.ex_prompt
else:
prompt = st.chat_input()
if prompt:
st.session_state.messages.append({"role": "user", "content": prompt, "avatar": 'π§βπ»'})
st.session_state.prompt = prompt
st.session_state.log_messages = []
st.session_state.show_logs = False
with st.chat_message("user", avatar='π§βπ»'):
print(f"Starting new question: {prompt}\n")
st.write(prompt)
st.session_state.ex_prompt = None
# Generate a new response if last message is not from assistant
if st.session_state.prompt:
with st.chat_message("assistant", avatar='π€'):
st.session_state.status = st.status('Processing...', expanded=False)
response = st.session_state.agent.chat(st.session_state.prompt)
# from vectara_agentic.sub_query_workflow import SubQuestionQueryWorkflow
# response = await st.session_state.agent.run(inputs=SubQuestionQueryWorkflow.InputsModel(query=st.session_state.prompt))
res = escape_dollars_outside_latex(response.response)
#response = await st.session_state.agent.achat(st.session_state.prompt)
#res = escape_dollars_outside_latex(response.response)
#res = await st.session_state.agent.astream_chat(st.session_state.prompt)
#response = ''.join([token async for token in res.async_response_gen()])
#res = escape_dollars_outside_latex(response)
message = {"role": "assistant", "content": res, "avatar": 'π€'}
st.session_state.messages.append(message)
st.markdown(res)
send_amplitude_data(
user_query=st.session_state.messages[-2]["content"],
bot_response=st.session_state.messages[-1]["content"],
demo_name=cfg['demo_name']
)
st.session_state.ex_prompt = None
st.session_state.prompt = None
st.session_state.first_turn = False
st.rerun()
# Record user feedback
if (st.session_state.messages[-1]["role"] == "assistant") & (st.session_state.messages[-1]["content"] != initial_prompt):
if "feedback_key" not in st.session_state:
st.session_state.feedback_key = 0
streamlit_feedback(
feedback_type="thumbs", on_submit=thumbs_feedback, key=str(st.session_state.feedback_key),
kwargs={"user_query": st.session_state.messages[-2]["content"],
"bot_response": st.session_state.messages[-1]["content"],
"demo_name": cfg["demo_name"]}
)
sys.stdout.flush()
|