Spaces:
Running
Running
File size: 7,440 Bytes
b5e0c7e 72b3bfc b5e0c7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
from omegaconf import OmegaConf
import streamlit as st
import os
from PIL import Image
import re
import sys
from pydantic import Field, BaseModel
from vectara_agent.agent import Agent, AgentType, AgentStatusType
from vectara_agent.tools import ToolsFactory
tickers = {
"AAPL": "Apple Computer",
"GOOG": "Google",
"AMZN": "Amazon",
"SNOW": "Snowflake",
"TEAM": "Atlassian",
"TSLA": "Tesla",
"NVDA": "Nvidia",
"MSFT": "Microsoft",
"AMD": "Advanced Micro Devices",
}
years = [2020, 2021, 2022, 2023, 2024]
initial_prompt = "How can I help you today?"
def create_tools(cfg):
def get_company_info() -> list[str]:
"""
Returns a dictionary of companies you can query about their financial reports.
The output is a dictionary of valid ticker symbols mapped to company names.
You can use this to identify the companies you can query about, and their ticker information.
"""
return tickers
def get_valid_years() -> list[str]:
"""
Returns a list of the years for which financial reports are available.
"""
return years
class QueryFinancialReportsArgs(BaseModel):
query: str = Field(..., description="The user query. Must be a question about the company's financials, and should not include the company name, ticker or year.")
year: int = Field(..., description=f"The year. an integer between {min(years)} and {max(years)}.")
ticker: str = Field(..., description=f"The company ticker. Must be a valid ticket symbol from the list {tickers.keys()}.")
tools_factory = ToolsFactory(vectara_api_key=cfg.api_key,
vectara_customer_id=cfg.customer_id,
vectara_corpus_id=cfg.corpus_id)
query_financial_reports = tools_factory.create_rag_tool(
tool_name = "query_financial_reports",
tool_description = """
Given a company name and year,
returns a response (str) to a user query about the company's financials for that year.
When using this tool, make sure to provide the a valid company ticker and a year.
Use this tool to get financial information one metric at a time.
""",
tool_args_schema = QueryFinancialReportsArgs,
tool_filter_template = "doc.year = {year} and doc.ticker = '{ticker}'",
reranker = "slingshot", rerank_k = 100,
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.0,
summary_num_results = 15,
vectara_summarizer = 'vectara-summary-ext-24-05-med-omni',
)
return (tools_factory.get_tools(
[
get_company_info,
get_valid_years,
]
) +
tools_factory.standard_tools() +
tools_factory.financial_tools() +
[query_financial_reports]
)
def launch_bot(agent_type: AgentType):
def reset():
cfg = st.session_state.cfg
st.session_state.messages = [{"role": "assistant", "content": initial_prompt, "avatar": "π¦"}]
st.session_state.thinking_message = "Agent at work..."
# Create the agent
print("Creating agent...")
def update_func(status_type: AgentStatusType, msg: str):
output = f"{status_type.value} - {msg}"
st.session_state.thinking_placeholder.text(output)
financial_bot_instructions = """
- You are a helpful financial assistant in conversation with a user. Use your financial expertise when crafting a query to the tool, to ensure you get the most accurate information.
- You can answer questions, provide insights, or summarize any information from financial reports.
- A user may refer to a company's ticker instead of its full name - consider those the same when a user is asking about a company.
- When calculating a financial metric, make sure you have all the information from tools to complete the calculation.
- In many cases you may need to query tools on each sub-metric separately before computing the final metric.
- When using a tool to obtain financial data, consider the fact that information for a certain year may be reported in the the following year's report.
- Report financial data in a consistent manner. For example if you report revenue in thousands, always report revenue in thousands.
"""
st.session_state.agent = Agent(
agent_type = agent_type,
tools = create_tools(cfg),
topic = "10-K financial reports",
custom_instructions = financial_bot_instructions,
update_func = update_func
)
if 'cfg' not in st.session_state:
cfg = OmegaConf.create({
'customer_id': str(os.environ['VECTARA_CUSTOMER_ID']),
'corpus_id': str(os.environ['VECTARA_CORPUS_ID']),
'api_key': str(os.environ['VECTARA_API_KEY']),
})
st.session_state.cfg = cfg
reset()
cfg = st.session_state.cfg
st.set_page_config(page_title="Financial Assistant", layout="wide")
# left side content
with st.sidebar:
image = Image.open('Vectara-logo.png')
st.image(image, width=250)
st.markdown("## Welcome to the financial assistant demo.\n\n\n")
companies = ", ".join(tickers.values())
st.markdown(
f"This assistant can help you with any questions about the financials of the following companies:\n\n **{companies}**.\n\n"
"You can ask questions, analyze data, provide insights, or summarize any information from financial reports."
)
st.markdown("\n\n")
if st.button('Start Over'):
reset()
st.markdown("---")
st.markdown(
"## How this works?\n"
"This app was built with [Vectara](https://vectara.com).\n\n"
"It demonstrates the use of Agentic Chat functionality with Vectara"
)
st.markdown("---")
if "messages" not in st.session_state.keys():
reset()
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"], avatar=message["avatar"]):
st.write(message["content"])
# User-provided prompt
if prompt := st.chat_input():
st.session_state.messages.append({"role": "user", "content": prompt, "avatar": 'π§βπ»'})
with st.chat_message("user", avatar='π§βπ»'):
print(f"Starting new question: {prompt}\n")
st.write(prompt)
# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant", avatar='π€'):
with st.spinner(st.session_state.thinking_message):
st.session_state.thinking_placeholder = st.empty()
res = st.session_state.agent.chat(prompt)
cleaned = re.sub(r'\[\d+\]', '', res).replace('$', '\\$')
st.write(cleaned)
message = {"role": "assistant", "content": cleaned, "avatar": 'π€'}
st.session_state.messages.append(message)
st.session_state.thinking_placeholder.empty()
sys.stdout.flush()
if __name__ == "__main__":
print("Starting up...")
launch_bot(agent_type = AgentType.REACT)
|