Spaces:
Sleeping
Sleeping
File size: 4,335 Bytes
7f46a81 0fc680c 0345552 0fc680c adf3dc3 7f46a81 1dac99b 6a0cffd 673067b 0aa3b05 4b2fddf 0fc680c c72a9f3 0aa3b05 1388aa0 673067b 0aa3b05 1dac99b 7f46a81 1dac99b 7f46a81 347c81e 7f46a81 d26ed68 7f46a81 d26ed68 1dac99b c72a9f3 d26ed68 7f46a81 1dac99b c72a9f3 1dac99b 6a0cffd 0fc680c 1dac99b 7f46a81 0fc680c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
from omegaconf import OmegaConf
from query import VectaraQuery
import os
import streamlit as st
from PIL import Image
def isTrue(x) -> bool:
if isinstance(x, bool):
return x
return x.strip().lower() == 'true'
def launch_bot():
def generate_response(question):
response = vq.submit_query(question)
return response
def generate_streaming_response(question):
response = vq.submit_query_streaming(question)
return response
if 'cfg' not in st.session_state:
corpus_ids = str(os.environ['corpus_ids']).split(',')
cfg = OmegaConf.create({
'customer_id': str(os.environ['customer_id']),
'corpus_ids': corpus_ids,
'api_key': str(os.environ['api_key']),
'title': os.environ['title'],
'description': os.environ['description'],
'source_data_desc': os.environ['source_data_desc'],
'streaming': isTrue(os.environ.get('streaming', False)),
'prompt_name': os.environ.get('prompt_name', None),
'examples': os.environ.get('examples', '')
})
st.session_state.cfg = cfg
st.session_state.vq = VectaraQuery(cfg.api_key, cfg.customer_id, cfg.corpus_ids, cfg.prompt_name)
cfg = st.session_state.cfg
vq = st.session_state.vq
st.set_page_config(page_title=cfg.title, layout="wide")
# left side content
with st.sidebar:
image = Image.open('Vectara-logo.png')
st.markdown(f"## Welcome to {cfg.title}\n\n"
f"This demo uses Retrieval Augmented Generation to ask questions about {cfg.source_data_desc}\n\n")
st.markdown("---")
st.markdown(
"## How this works?\n"
"This app was built with [Vectara](https://vectara.com).\n"
"Vectara's [Indexing API](https://docs.vectara.com/docs/api-reference/indexing-apis/indexing) was used to ingest the data into a Vectara corpus (or index).\n\n"
"This app uses Vectara [Chat API](https://docs.vectara.com/docs/console-ui/vectara-chat-overview) to query the corpus and present the results to you, answering your question.\n\n"
)
st.markdown("---")
st.image(image, width=250)
st.markdown(f"<center> <h2> Vectara chat demo: {cfg.title} </h2> </center>", unsafe_allow_html=True)
st.markdown(f"<center> <h4> {cfg.description} <h4> </center>", unsafe_allow_html=True)
if "messages" not in st.session_state.keys():
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]
example_messages = [example.strip() for example in cfg.examples.split(",")]
example_messages = [em for em in example_messages if len(em)>0]
if len(example_messages) > 0:
st.markdown("<h6>Queries To Try:</h6>", unsafe_allow_html=True)
ex_cols = st.columns(4)
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
# User-provided prompt
if prompt := st.chat_input():
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)
# Example prompt
for i, example in enumerate(example_messages):
button_pressed = False
with ex_cols[i]:
if st.button(example):
prompt = example
button_pressed = True
if button_pressed:
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)
# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
if cfg.streaming:
stream = generate_streaming_response(prompt)
response = st.write_stream(stream)
else:
with st.spinner("Thinking..."):
response = generate_response(prompt)
st.write(response)
message = {"role": "assistant", "content": response}
st.session_state.messages.append(message)
if __name__ == "__main__":
launch_bot()
|