Spaces:
Sleeping
Sleeping
File size: 7,176 Bytes
7f46a81 2b4047a 13b5346 7f46a81 0b1ab1a 13b5346 0b1ab1a 2b4047a 66a2429 b13bc09 45b150a 2b4047a 13b5346 45b150a d065263 5b51fe4 d065263 60f0f89 7f46a81 2b4047a 66a2429 2b4047a b497ee0 13b5346 b497ee0 13b5346 b497ee0 45b150a 0b1ab1a b743e51 45b150a 0aa3b05 45b150a 0aa3b05 45b150a 0aa3b05 4b2fddf d065263 708a1af 13b5346 0aa3b05 539362e 13b5346 b743e51 45b150a 673067b 0aa3b05 1dac99b 7f46a81 b497ee0 7f46a81 45b150a 66a2429 13b5346 2b4047a 13b5346 7f46a81 2b4047a 7f46a81 347c81e 66a2429 7f46a81 45b150a 7f46a81 b497ee0 2b4047a 45b150a 66a2429 45b150a b743e51 b497ee0 b743e51 539362e 66a2429 b497ee0 b743e51 b497ee0 66a2429 b497ee0 2b4047a b497ee0 2b4047a 66a2429 d065263 13b5346 2b4047a b743e51 13b5346 2b4047a 1dac99b 7f46a81 45b150a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
from omegaconf import OmegaConf
from query import VectaraQuery
import os
from PIL import Image
import uuid
import streamlit as st
from streamlit_pills import pills
from streamlit_feedback import streamlit_feedback
from utils import thumbs_feedback, send_amplitude_data, escape_dollars_outside_latex
from dotenv import load_dotenv
load_dotenv(override=True)
max_examples = 6
languages = {'English': 'eng', 'Spanish': 'spa', 'French': 'fra', 'Chinese': 'zho', 'German': 'deu', 'Hindi': 'hin', 'Arabic': 'ara',
'Portuguese': 'por', 'Italian': 'ita', 'Japanese': 'jpn', 'Korean': 'kor', 'Russian': 'rus', 'Turkish': 'tur', 'Persian (Farsi)': 'fas',
'Vietnamese': 'vie', 'Thai': 'tha', 'Hebrew': 'heb', 'Dutch': 'nld', 'Indonesian': 'ind', 'Polish': 'pol', 'Ukrainian': 'ukr',
'Romanian': 'ron', 'Swedish': 'swe', 'Czech': 'ces', 'Greek': 'ell', 'Bengali': 'ben', 'Malay (or Malaysian)': 'msa', 'Urdu': 'urd'}
# Setup for HTTP API Calls to Amplitude Analytics
if 'device_id' not in st.session_state:
st.session_state.device_id = str(uuid.uuid4())
if "feedback_key" not in st.session_state:
st.session_state.feedback_key = 0
def isTrue(x) -> bool:
if isinstance(x, bool):
return x
return x.strip().lower() == 'true'
def launch_bot():
def reset():
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?", "avatar": 'π€'}]
st.session_state.ex_prompt = None
st.session_state.first_turn = True
def generate_response(question):
response = vq.submit_query(question, languages[st.session_state.language])
return response
def generate_streaming_response(question):
response = vq.submit_query_streaming(question, languages[st.session_state.language])
return response
def show_example_questions():
if len(st.session_state.example_messages) > 0 and st.session_state.first_turn:
selected_example = pills("Queries to Try:", st.session_state.example_messages, index=None)
if selected_example:
st.session_state.ex_prompt = selected_example
st.session_state.first_turn = False
return True
return False
if 'cfg' not in st.session_state:
corpus_keys = str(os.environ['corpus_keys']).split(',')
cfg = OmegaConf.create({
'corpus_keys': corpus_keys,
'api_key': str(os.environ['api_key']),
'title': os.environ['title'],
'source_data_desc': os.environ['source_data_desc'],
'streaming': isTrue(os.environ.get('streaming', False)),
'prompt_name': os.environ.get('prompt_name', None),
'examples': os.environ.get('examples', None),
'language': 'English'
})
st.session_state.cfg = cfg
st.session_state.ex_prompt = None
st.session_state.first_turn = True
st.session_state.language = cfg.language
example_messages = [example.strip() for example in cfg.examples.split(",")]
st.session_state.example_messages = [em for em in example_messages if len(em)>0][:max_examples]
st.session_state.vq = VectaraQuery(cfg.api_key, cfg.corpus_keys, cfg.prompt_name)
cfg = st.session_state.cfg
vq = st.session_state.vq
st.set_page_config(page_title=cfg.title, layout="wide")
# left side content
with st.sidebar:
image = Image.open('Vectara-logo.png')
st.image(image, width=175)
st.markdown(f"## About\n\n"
f"This demo uses Vectara RAG to ask questions about {cfg.source_data_desc}\n")
cfg.language = st.selectbox('Language:', languages.keys())
if st.session_state.language != cfg.language:
st.session_state.language = cfg.language
reset()
st.rerun()
st.markdown("\n")
bc1, _ = st.columns([1, 1])
with bc1:
if st.button('Start Over'):
reset()
st.rerun()
st.markdown("---")
st.markdown(
"## How this works?\n"
"This app was built with [Vectara](https://vectara.com).\n"
"This app uses Vectara [Chat API](https://docs.vectara.com/docs/console-ui/vectara-chat-overview) to query the corpus and present the results to you, answering your question.\n\n"
)
st.markdown(f"<center> <h2> Vectara AI Assistant: {cfg.title} </h2> </center>", unsafe_allow_html=True)
if "messages" not in st.session_state.keys():
reset()
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"], avatar=message["avatar"]):
st.write(message["content"])
example_container = st.empty()
with example_container:
if show_example_questions():
example_container.empty()
st.rerun()
# select prompt from example question or user provided input
if st.session_state.ex_prompt:
prompt = st.session_state.ex_prompt
else:
prompt = st.chat_input()
if prompt:
st.session_state.messages.append({"role": "user", "content": prompt, "avatar": 'π§βπ»'})
with st.chat_message("user", avatar="π§βπ»"):
st.write(prompt)
st.session_state.ex_prompt = None
# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant", avatar="π€"):
if cfg.streaming:
stream = generate_streaming_response(prompt)
response = st.write_stream(stream)
else:
with st.spinner("Thinking..."):
response = generate_response(prompt)
st.write(response)
response = escape_dollars_outside_latex(response)
message = {"role": "assistant", "content": response, "avatar": 'π€'}
st.session_state.messages.append(message)
# Send query and response to Amplitude Analytics
send_amplitude_data(
user_query=st.session_state.messages[-2]["content"],
chat_response=st.session_state.messages[-1]["content"],
demo_name=cfg["title"],
language=st.session_state.language
)
st.rerun()
if (st.session_state.messages[-1]["role"] == "assistant") & (st.session_state.messages[-1]["content"] != "How may I help you?"):
streamlit_feedback(feedback_type="thumbs", on_submit = thumbs_feedback, key = st.session_state.feedback_key,
kwargs = {"user_query": st.session_state.messages[-2]["content"],
"chat_response": st.session_state.messages[-1]["content"],
"demo_name": cfg["title"],
"response_language": st.session_state.language})
if __name__ == "__main__":
launch_bot() |