File size: 7,176 Bytes
7f46a81
 
 
2b4047a
13b5346
7f46a81
 
0b1ab1a
13b5346
0b1ab1a
2b4047a
 
66a2429
 
b13bc09
45b150a
2b4047a
13b5346
 
 
 
 
 
 
 
 
 
 
45b150a
d065263
 
5b51fe4
d065263
60f0f89
7f46a81
2b4047a
66a2429
2b4047a
 
 
 
b497ee0
13b5346
b497ee0
 
 
13b5346
b497ee0
45b150a
0b1ab1a
 
 
 
 
 
 
b743e51
45b150a
0aa3b05
45b150a
0aa3b05
45b150a
0aa3b05
 
4b2fddf
d065263
708a1af
13b5346
 
0aa3b05
 
539362e
13b5346
 
b743e51
 
45b150a
 
673067b
0aa3b05
1dac99b
7f46a81
 
 
b497ee0
7f46a81
45b150a
 
66a2429
13b5346
 
 
 
2b4047a
13b5346
7f46a81
2b4047a
 
 
 
 
 
 
7f46a81
 
 
 
347c81e
66a2429
7f46a81
45b150a
7f46a81
b497ee0
2b4047a
45b150a
 
 
66a2429
45b150a
b743e51
 
 
 
 
 
b497ee0
b743e51
539362e
 
 
 
 
66a2429
 
b497ee0
b743e51
 
b497ee0
 
66a2429
b497ee0
2b4047a
 
b497ee0
 
 
 
2b4047a
 
66a2429
d065263
13b5346
 
2b4047a
 
 
 
 
 
b743e51
13b5346
 
 
2b4047a
 
 
 
1dac99b
7f46a81
45b150a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from omegaconf import OmegaConf
from query import VectaraQuery
import os
from PIL import Image
import uuid

import streamlit as st
from streamlit_pills import pills
from streamlit_feedback import streamlit_feedback

from utils import thumbs_feedback, send_amplitude_data, escape_dollars_outside_latex

from dotenv import load_dotenv
load_dotenv(override=True)

max_examples = 6
languages = {'English': 'eng', 'Spanish': 'spa', 'French': 'fra', 'Chinese': 'zho', 'German': 'deu', 'Hindi': 'hin', 'Arabic': 'ara',
             'Portuguese': 'por', 'Italian': 'ita', 'Japanese': 'jpn', 'Korean': 'kor', 'Russian': 'rus', 'Turkish': 'tur', 'Persian (Farsi)': 'fas',
             'Vietnamese': 'vie', 'Thai': 'tha', 'Hebrew': 'heb', 'Dutch': 'nld', 'Indonesian': 'ind', 'Polish': 'pol', 'Ukrainian': 'ukr',
             'Romanian': 'ron', 'Swedish': 'swe', 'Czech': 'ces', 'Greek': 'ell', 'Bengali': 'ben', 'Malay (or Malaysian)': 'msa', 'Urdu': 'urd'}

# Setup for HTTP API Calls to Amplitude Analytics
if 'device_id' not in st.session_state:
    st.session_state.device_id = str(uuid.uuid4())


if "feedback_key" not in st.session_state:
        st.session_state.feedback_key = 0

def isTrue(x) -> bool:
    if isinstance(x, bool):
        return x
    return x.strip().lower() == 'true'

def launch_bot():
    def reset():
        st.session_state.messages = [{"role": "assistant", "content": "How may I help you?", "avatar": 'πŸ€–'}]
        st.session_state.ex_prompt = None
        st.session_state.first_turn = True


    def generate_response(question):
        response = vq.submit_query(question, languages[st.session_state.language])
        return response
    
    def generate_streaming_response(question):
        response = vq.submit_query_streaming(question, languages[st.session_state.language])
        return response
    
    def show_example_questions():        
        if len(st.session_state.example_messages) > 0 and st.session_state.first_turn:            
            selected_example = pills("Queries to Try:", st.session_state.example_messages, index=None)
            if selected_example:
                st.session_state.ex_prompt = selected_example
                st.session_state.first_turn = False
                return True
        return False

    if 'cfg' not in st.session_state:
        corpus_keys = str(os.environ['corpus_keys']).split(',')
        cfg = OmegaConf.create({
            'corpus_keys': corpus_keys,
            'api_key': str(os.environ['api_key']),
            'title': os.environ['title'],
            'source_data_desc': os.environ['source_data_desc'],
            'streaming': isTrue(os.environ.get('streaming', False)),
            'prompt_name': os.environ.get('prompt_name', None),
            'examples': os.environ.get('examples', None),
            'language': 'English'
        })
        st.session_state.cfg = cfg
        st.session_state.ex_prompt = None
        st.session_state.first_turn = True
        st.session_state.language = cfg.language
        example_messages = [example.strip() for example in cfg.examples.split(",")]
        st.session_state.example_messages = [em for em in example_messages if len(em)>0][:max_examples]
        
        st.session_state.vq = VectaraQuery(cfg.api_key, cfg.corpus_keys, cfg.prompt_name)

    cfg = st.session_state.cfg
    vq = st.session_state.vq
    st.set_page_config(page_title=cfg.title, layout="wide")

    # left side content
    with st.sidebar:
        image = Image.open('Vectara-logo.png')
        st.image(image, width=175)
        st.markdown(f"## About\n\n"
                    f"This demo uses Vectara RAG to ask questions about {cfg.source_data_desc}\n")
        
        cfg.language = st.selectbox('Language:', languages.keys())
        if st.session_state.language != cfg.language:
            st.session_state.language = cfg.language
            reset()
            st.rerun()

        st.markdown("\n")
        bc1, _ = st.columns([1, 1])
        with bc1:
            if st.button('Start Over'):
                reset()
                st.rerun()

        st.markdown("---")
        st.markdown(
            "## How this works?\n"
            "This app was built with [Vectara](https://vectara.com).\n"
            "This app uses Vectara [Chat API](https://docs.vectara.com/docs/console-ui/vectara-chat-overview) to query the corpus and present the results to you, answering your question.\n\n"
        )       

    st.markdown(f"<center> <h2> Vectara AI Assistant: {cfg.title} </h2> </center>", unsafe_allow_html=True)

    if "messages" not in st.session_state.keys():
        reset()
                
    # Display chat messages
    for message in st.session_state.messages:
        with st.chat_message(message["role"], avatar=message["avatar"]):
            st.write(message["content"])

    example_container = st.empty()
    with example_container:
        if show_example_questions():
            example_container.empty()
            st.rerun()

    # select prompt from example question or user provided input
    if st.session_state.ex_prompt:
        prompt = st.session_state.ex_prompt
    else:
        prompt = st.chat_input()
    if prompt:
        st.session_state.messages.append({"role": "user", "content": prompt, "avatar": 'πŸ§‘β€πŸ’»'})
        with st.chat_message("user", avatar="πŸ§‘β€πŸ’»"):
            st.write(prompt)
        st.session_state.ex_prompt = None
        
    # Generate a new response if last message is not from assistant
    if st.session_state.messages[-1]["role"] != "assistant":
        with st.chat_message("assistant", avatar="πŸ€–"):
            if cfg.streaming:
                stream = generate_streaming_response(prompt)
                response = st.write_stream(stream)
            else:
                with st.spinner("Thinking..."):
                    response = generate_response(prompt)
                    st.write(response)

            response = escape_dollars_outside_latex(response)
            message = {"role": "assistant", "content": response, "avatar": 'πŸ€–'}
            st.session_state.messages.append(message)

            # Send query and response to Amplitude Analytics
            send_amplitude_data(
                user_query=st.session_state.messages[-2]["content"],
                chat_response=st.session_state.messages[-1]["content"],
                demo_name=cfg["title"],
                language=st.session_state.language
            )
            st.rerun()

    if (st.session_state.messages[-1]["role"] == "assistant") & (st.session_state.messages[-1]["content"] != "How may I help you?"):
        streamlit_feedback(feedback_type="thumbs", on_submit = thumbs_feedback, key = st.session_state.feedback_key,
                                      kwargs = {"user_query": st.session_state.messages[-2]["content"],
                                                "chat_response": st.session_state.messages[-1]["content"],
                                                "demo_name": cfg["title"],
                                                "response_language": st.session_state.language})
    
if __name__ == "__main__":
    launch_bot()