xeon27
commited on
Commit
·
aa87c61
1
Parent(s):
37ebe4e
Remove commented code
Browse files- app.py +1 -125
- src/display/utils.py +1 -13
- src/leaderboard/read_evals.py +0 -13
- src/populate.py +0 -6
app.py
CHANGED
|
@@ -62,36 +62,8 @@ AGENTIC_LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PAT
|
|
| 62 |
def init_leaderboard(dataframe, benchmark_type):
|
| 63 |
if dataframe is None or dataframe.empty:
|
| 64 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
|
|
|
| 65 |
AutoEvalColumnSubset = [c for c in fields(AutoEvalColumn) if ((c.name=="Model") or (TASK_NAME_INVERSE_MAP.get(c.name, dict()).get("type", "")==benchmark_type))]
|
| 66 |
-
# return Leaderboard(
|
| 67 |
-
# value=dataframe,
|
| 68 |
-
# datatype=[c.type for c in AutoEvalColumnSubset],
|
| 69 |
-
# select_columns=SelectColumns(
|
| 70 |
-
# default_selection=[c.name for c in AutoEvalColumnSubset if c.displayed_by_default],
|
| 71 |
-
# cant_deselect=[c.name for c in AutoEvalColumnSubset if c.never_hidden],
|
| 72 |
-
# label="Select Columns to Display:",
|
| 73 |
-
# ),
|
| 74 |
-
# # # search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
| 75 |
-
# search_columns=[AutoEvalColumn.model.name,],
|
| 76 |
-
# hide_columns=[c.name for c in AutoEvalColumnSubset if c.hidden],
|
| 77 |
-
# # filter_columns=[
|
| 78 |
-
# # ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
| 79 |
-
# # ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
| 80 |
-
# # ColumnFilter(
|
| 81 |
-
# # AutoEvalColumn.params.name,
|
| 82 |
-
# # type="slider",
|
| 83 |
-
# # min=0.01,
|
| 84 |
-
# # max=150,
|
| 85 |
-
# # label="Select the number of parameters (B)",
|
| 86 |
-
# # ),
|
| 87 |
-
# # ColumnFilter(
|
| 88 |
-
# # AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=False
|
| 89 |
-
# # ),
|
| 90 |
-
# # ],
|
| 91 |
-
# filter_columns=[],
|
| 92 |
-
# bool_checkboxgroup_label="Hide models",
|
| 93 |
-
# interactive=False,
|
| 94 |
-
# )
|
| 95 |
|
| 96 |
return gr.components.Dataframe(
|
| 97 |
value=dataframe,
|
|
@@ -115,102 +87,6 @@ with demo:
|
|
| 115 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
| 116 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 117 |
|
| 118 |
-
# with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
| 119 |
-
# with gr.Column():
|
| 120 |
-
# with gr.Row():
|
| 121 |
-
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 122 |
-
|
| 123 |
-
# with gr.Column():
|
| 124 |
-
# with gr.Accordion(
|
| 125 |
-
# f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
| 126 |
-
# open=False,
|
| 127 |
-
# ):
|
| 128 |
-
# with gr.Row():
|
| 129 |
-
# finished_eval_table = gr.components.Dataframe(
|
| 130 |
-
# value=finished_eval_queue_df,
|
| 131 |
-
# headers=EVAL_COLS,
|
| 132 |
-
# datatype=EVAL_TYPES,
|
| 133 |
-
# row_count=5,
|
| 134 |
-
# )
|
| 135 |
-
# with gr.Accordion(
|
| 136 |
-
# f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
| 137 |
-
# open=False,
|
| 138 |
-
# ):
|
| 139 |
-
# with gr.Row():
|
| 140 |
-
# running_eval_table = gr.components.Dataframe(
|
| 141 |
-
# value=running_eval_queue_df,
|
| 142 |
-
# headers=EVAL_COLS,
|
| 143 |
-
# datatype=EVAL_TYPES,
|
| 144 |
-
# row_count=5,
|
| 145 |
-
# )
|
| 146 |
-
|
| 147 |
-
# with gr.Accordion(
|
| 148 |
-
# f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
| 149 |
-
# open=False,
|
| 150 |
-
# ):
|
| 151 |
-
# with gr.Row():
|
| 152 |
-
# pending_eval_table = gr.components.Dataframe(
|
| 153 |
-
# value=pending_eval_queue_df,
|
| 154 |
-
# headers=EVAL_COLS,
|
| 155 |
-
# datatype=EVAL_TYPES,
|
| 156 |
-
# row_count=5,
|
| 157 |
-
# )
|
| 158 |
-
# with gr.Row():
|
| 159 |
-
# gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
| 160 |
-
|
| 161 |
-
# with gr.Row():
|
| 162 |
-
# with gr.Column():
|
| 163 |
-
# model_name_textbox = gr.Textbox(label="Model name")
|
| 164 |
-
# revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
| 165 |
-
# model_type = gr.Dropdown(
|
| 166 |
-
# choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
| 167 |
-
# label="Model type",
|
| 168 |
-
# multiselect=False,
|
| 169 |
-
# value=None,
|
| 170 |
-
# interactive=True,
|
| 171 |
-
# )
|
| 172 |
-
|
| 173 |
-
# with gr.Column():
|
| 174 |
-
# precision = gr.Dropdown(
|
| 175 |
-
# choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
| 176 |
-
# label="Precision",
|
| 177 |
-
# multiselect=False,
|
| 178 |
-
# value="float16",
|
| 179 |
-
# interactive=True,
|
| 180 |
-
# )
|
| 181 |
-
# weight_type = gr.Dropdown(
|
| 182 |
-
# choices=[i.value.name for i in WeightType],
|
| 183 |
-
# label="Weights type",
|
| 184 |
-
# multiselect=False,
|
| 185 |
-
# value="Original",
|
| 186 |
-
# interactive=True,
|
| 187 |
-
# )
|
| 188 |
-
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
| 189 |
-
|
| 190 |
-
# submit_button = gr.Button("Submit Eval")
|
| 191 |
-
# submission_result = gr.Markdown()
|
| 192 |
-
# submit_button.click(
|
| 193 |
-
# add_new_eval,
|
| 194 |
-
# [
|
| 195 |
-
# model_name_textbox,
|
| 196 |
-
# base_model_name_textbox,
|
| 197 |
-
# revision_name_textbox,
|
| 198 |
-
# precision,
|
| 199 |
-
# weight_type,
|
| 200 |
-
# model_type,
|
| 201 |
-
# ],
|
| 202 |
-
# submission_result,
|
| 203 |
-
# )
|
| 204 |
-
|
| 205 |
-
# with gr.Row():
|
| 206 |
-
# with gr.Accordion("📙 Citation", open=False):
|
| 207 |
-
# citation_button = gr.Textbox(
|
| 208 |
-
# value=CITATION_BUTTON_TEXT,
|
| 209 |
-
# label=CITATION_BUTTON_LABEL,
|
| 210 |
-
# lines=20,
|
| 211 |
-
# elem_id="citation-button",
|
| 212 |
-
# show_copy_button=True,
|
| 213 |
-
# )
|
| 214 |
|
| 215 |
scheduler = BackgroundScheduler()
|
| 216 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
|
|
|
| 62 |
def init_leaderboard(dataframe, benchmark_type):
|
| 63 |
if dataframe is None or dataframe.empty:
|
| 64 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 65 |
+
|
| 66 |
AutoEvalColumnSubset = [c for c in fields(AutoEvalColumn) if ((c.name=="Model") or (TASK_NAME_INVERSE_MAP.get(c.name, dict()).get("type", "")==benchmark_type))]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
return gr.components.Dataframe(
|
| 69 |
value=dataframe,
|
|
|
|
| 87 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
| 88 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
scheduler = BackgroundScheduler()
|
| 92 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
src/display/utils.py
CHANGED
|
@@ -23,22 +23,10 @@ class ColumnContent:
|
|
| 23 |
## Leaderboard columns
|
| 24 |
auto_eval_column_dict = []
|
| 25 |
# Init
|
| 26 |
-
# auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
| 27 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
| 28 |
-
#Scores
|
| 29 |
-
# auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "markdown", True)])
|
| 30 |
for task in Tasks:
|
| 31 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "markdown", True)])
|
| 32 |
-
# # Model information
|
| 33 |
-
# auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
| 34 |
-
# auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
| 35 |
-
# auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
| 36 |
-
# auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
| 37 |
-
# auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
| 38 |
-
# auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
| 39 |
-
# auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
| 40 |
-
# auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
| 41 |
-
# auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
| 42 |
|
| 43 |
# We use make dataclass to dynamically fill the scores from Tasks
|
| 44 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
|
|
|
| 23 |
## Leaderboard columns
|
| 24 |
auto_eval_column_dict = []
|
| 25 |
# Init
|
|
|
|
| 26 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
| 27 |
+
# Scores
|
|
|
|
| 28 |
for task in Tasks:
|
| 29 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "markdown", True)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
# We use make dataclass to dynamically fill the scores from Tasks
|
| 32 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -113,21 +113,9 @@ class EvalResult:
|
|
| 113 |
|
| 114 |
def to_dict(self):
|
| 115 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
| 116 |
-
# average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
| 117 |
data_dict = {
|
| 118 |
"eval_name": self.eval_name, # not a column, just a save name,
|
| 119 |
-
# AutoEvalColumn.precision.name: self.precision.value.name,
|
| 120 |
-
# AutoEvalColumn.model_type.name: self.model_type.value.name,
|
| 121 |
-
# AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
| 122 |
-
# AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
| 123 |
-
# AutoEvalColumn.architecture.name: self.architecture,
|
| 124 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
| 125 |
-
# AutoEvalColumn.revision.name: self.revision,
|
| 126 |
-
# AutoEvalColumn.average.name: average,
|
| 127 |
-
# AutoEvalColumn.license.name: self.license,
|
| 128 |
-
# AutoEvalColumn.likes.name: self.likes,
|
| 129 |
-
# AutoEvalColumn.params.name: self.num_params,
|
| 130 |
-
# AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
| 131 |
}
|
| 132 |
|
| 133 |
for task in Tasks:
|
|
@@ -185,7 +173,6 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
|
|
| 185 |
# Store results of same eval together
|
| 186 |
eval_name = eval_result.eval_name
|
| 187 |
if eval_name in eval_results.keys():
|
| 188 |
-
# eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
| 189 |
eval_results[eval_name].results.update(eval_result.results)
|
| 190 |
else:
|
| 191 |
eval_results[eval_name] = eval_result
|
|
|
|
| 113 |
|
| 114 |
def to_dict(self):
|
| 115 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
|
|
|
| 116 |
data_dict = {
|
| 117 |
"eval_name": self.eval_name, # not a column, just a save name,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
}
|
| 120 |
|
| 121 |
for task in Tasks:
|
|
|
|
| 173 |
# Store results of same eval together
|
| 174 |
eval_name = eval_result.eval_name
|
| 175 |
if eval_name in eval_results.keys():
|
|
|
|
| 176 |
eval_results[eval_name].results.update(eval_result.results)
|
| 177 |
else:
|
| 178 |
eval_results[eval_name] = eval_result
|
src/populate.py
CHANGED
|
@@ -41,23 +41,17 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
| 41 |
|
| 42 |
df = pd.DataFrame.from_records(all_data_json)
|
| 43 |
|
| 44 |
-
# df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
| 45 |
df = df[cols].round(decimals=2)
|
| 46 |
|
| 47 |
# subset for model and benchmark cols
|
| 48 |
df = df[[AutoEvalColumn.model.name] + benchmark_cols]
|
| 49 |
|
| 50 |
-
# # filter out if any of the benchmarks have not been produced
|
| 51 |
-
# df = df[has_no_nan_values(df, benchmark_cols)]
|
| 52 |
df = df.fillna(EMPTY_SYMBOL)
|
| 53 |
|
| 54 |
# make values clickable and link to log files
|
| 55 |
for col in benchmark_cols:
|
| 56 |
df[col] = df[[AutoEvalColumn.model.name, col]].apply(lambda x: f"[{x[col]}]({get_inspect_log_url(model_name=x[AutoEvalColumn.model.name].split('>')[1].split('<')[0], benchmark_name=TASK_NAME_INVERSE_MAP[col]['name'])})" if x[col] != EMPTY_SYMBOL else x[col], axis=1)
|
| 57 |
|
| 58 |
-
# # make task names clickable and link to inspect-evals repository - this creates issues later
|
| 59 |
-
# df = df.rename(columns={col: f"[{col}]({TASK_NAME_INVERSE_MAP[col]['source']})" for col in benchmark_cols})
|
| 60 |
-
|
| 61 |
return df
|
| 62 |
|
| 63 |
|
|
|
|
| 41 |
|
| 42 |
df = pd.DataFrame.from_records(all_data_json)
|
| 43 |
|
|
|
|
| 44 |
df = df[cols].round(decimals=2)
|
| 45 |
|
| 46 |
# subset for model and benchmark cols
|
| 47 |
df = df[[AutoEvalColumn.model.name] + benchmark_cols]
|
| 48 |
|
|
|
|
|
|
|
| 49 |
df = df.fillna(EMPTY_SYMBOL)
|
| 50 |
|
| 51 |
# make values clickable and link to log files
|
| 52 |
for col in benchmark_cols:
|
| 53 |
df[col] = df[[AutoEvalColumn.model.name, col]].apply(lambda x: f"[{x[col]}]({get_inspect_log_url(model_name=x[AutoEvalColumn.model.name].split('>')[1].split('<')[0], benchmark_name=TASK_NAME_INVERSE_MAP[col]['name'])})" if x[col] != EMPTY_SYMBOL else x[col], axis=1)
|
| 54 |
|
|
|
|
|
|
|
|
|
|
| 55 |
return df
|
| 56 |
|
| 57 |
|