Simplify
Browse files- app.py +1 -84
- create_log_file_map.py +0 -41
- data/inspect_log_file_names.json +0 -200
- data/populate_results.py +0 -41
- data/results.json.bak +0 -760
- refactor_eval_results.py +0 -192
- src/about.py +2 -43
- src/display/utils.py +0 -102
- src/envs.py +0 -25
- src/leaderboard/read_evals.py +0 -192
- src/populate.py +0 -98
- src/submission/check_validity.py +0 -99
- src/submission/submit.py +0 -119
app.py
CHANGED
@@ -9,91 +9,8 @@ from src.about import (
|
|
9 |
TITLE,
|
10 |
)
|
11 |
from src.display.css_html_js import custom_css, custom_js
|
12 |
-
# from src.display.utils import (
|
13 |
-
# COLS,
|
14 |
-
# ST_BENCHMARK_COLS,
|
15 |
-
# AGENTIC_BENCHMARK_COLS,
|
16 |
-
# EVAL_COLS,
|
17 |
-
# AutoEvalColumn,
|
18 |
-
# fields,
|
19 |
-
# )
|
20 |
-
# from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
21 |
-
# from src.populate import get_evaluation_queue_df, get_leaderboard_df, TASK_NAME_INVERSE_MAP
|
22 |
-
# from src.submission.submit import add_new_eval
|
23 |
from src.display.formatting import make_clickable_field
|
24 |
|
25 |
-
|
26 |
-
# def restart_space():
|
27 |
-
# API.restart_space(repo_id=REPO_ID)
|
28 |
-
|
29 |
-
# ### Space initialisation
|
30 |
-
# try:
|
31 |
-
# print(EVAL_REQUESTS_PATH)
|
32 |
-
# snapshot_download(
|
33 |
-
# repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
34 |
-
# )
|
35 |
-
# except Exception:
|
36 |
-
# restart_space()
|
37 |
-
# try:
|
38 |
-
# print(EVAL_RESULTS_PATH)
|
39 |
-
# snapshot_download(
|
40 |
-
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
41 |
-
# )
|
42 |
-
# except Exception:
|
43 |
-
# restart_space()
|
44 |
-
|
45 |
-
|
46 |
-
# ST_LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, ST_BENCHMARK_COLS)
|
47 |
-
# AGENTIC_LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, AGENTIC_BENCHMARK_COLS)
|
48 |
-
|
49 |
-
# (
|
50 |
-
# finished_eval_queue_df,
|
51 |
-
# running_eval_queue_df,
|
52 |
-
# pending_eval_queue_df,
|
53 |
-
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
54 |
-
|
55 |
-
# def bold_max(s):
|
56 |
-
# is_max = s == s.max() # Boolean Series: True for the max value(s)
|
57 |
-
# return ['font-weight: bold' if v else '' for v in is_max]
|
58 |
-
|
59 |
-
# def init_leaderboard(df, benchmark_type):
|
60 |
-
# if df is None or df.empty:
|
61 |
-
# raise ValueError("Leaderboard DataFrame is empty or None.")
|
62 |
-
|
63 |
-
# non_task_cols = ["Model"]
|
64 |
-
# if benchmark_type == "agentic":
|
65 |
-
# # Include agent column
|
66 |
-
# non_task_cols.append("Agent")
|
67 |
-
# elif benchmark_type == "base":
|
68 |
-
# # Drop agent column
|
69 |
-
# dataframe = dataframe.drop(columns=["Agent"])
|
70 |
-
# AutoEvalColumnSubset = [c for c in fields(AutoEvalColumn) if ((c.name in non_task_cols) or (TASK_NAME_INVERSE_MAP.get(c.name, dict()).get("type", "")==benchmark_type))]
|
71 |
-
|
72 |
-
# styler = dataframe.style.apply(bold_max, subset=pd.IndexSlice[:, dataframe.columns[1:]])
|
73 |
-
# df.style.set_table_styles([
|
74 |
-
# {'selector': 'th', 'props': [('text-align', 'center')]},
|
75 |
-
# {'selector': 'td', 'props': [('text-align', 'center')]}
|
76 |
-
# ])
|
77 |
-
# Define a common tooltip text
|
78 |
-
# tooltip_text = "This is the common tooltip"
|
79 |
-
|
80 |
-
# # Create a tooltip DataFrame with the same shape as df,
|
81 |
-
# # filled with the same tooltip text for each cell.
|
82 |
-
# tooltips = pd.DataFrame(tooltip_text, index=df.index, columns=df.columns)
|
83 |
-
|
84 |
-
# # Apply the tooltips to the DataFrame
|
85 |
-
# styled_df = df.style.set_tooltips(tooltips)
|
86 |
-
|
87 |
-
|
88 |
-
# return gr.components.Dataframe(
|
89 |
-
# value=df,
|
90 |
-
# datatype=[c.type for c in AutoEvalColumnSubset],
|
91 |
-
# column_widths=["150px" if c.name != "Model" else "250px" for c in AutoEvalColumnSubset],
|
92 |
-
# wrap=False,
|
93 |
-
# )
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
def build_leaderboard(type):
|
98 |
with open('data/results.json', 'r') as f:
|
99 |
results = json.load(f)
|
@@ -147,7 +64,7 @@ def build_leaderboard(type):
|
|
147 |
|
148 |
if type == "agentic":
|
149 |
# Include agent column as second column after Model
|
150 |
-
results_df.insert(1, 'Agent', '
|
151 |
|
152 |
return gr.components.Dataframe(
|
153 |
value=results_df,
|
|
|
9 |
TITLE,
|
10 |
)
|
11 |
from src.display.css_html_js import custom_css, custom_js
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
from src.display.formatting import make_clickable_field
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def build_leaderboard(type):
|
15 |
with open('data/results.json', 'r') as f:
|
16 |
results = json.load(f)
|
|
|
64 |
|
65 |
if type == "agentic":
|
66 |
# Include agent column as second column after Model
|
67 |
+
results_df.insert(1, 'Agent', make_clickable_field('Basic Agent', 'https://inspect.ai-safety-institute.org.uk/agents.html#sec-basic-agent'))
|
68 |
|
69 |
return gr.components.Dataframe(
|
70 |
value=results_df,
|
create_log_file_map.py
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
|
4 |
-
from collections import defaultdict
|
5 |
-
|
6 |
-
from refactor_eval_results import AGENTIC_LOG_MODEL_NAME_MAP, AGENTIC_TASKS
|
7 |
-
|
8 |
-
|
9 |
-
def main():
|
10 |
-
|
11 |
-
base_bm_input_path = "./base_benchmarking_logs"
|
12 |
-
agentic_bm_input_path = "/fs01/projects/aieng/public/inspect_evals/agentic_benchmarking_runs"
|
13 |
-
|
14 |
-
log_file_map = defaultdict()
|
15 |
-
|
16 |
-
for model_name in os.listdir(base_bm_input_path):
|
17 |
-
log_file_map[model_name] = defaultdict(str)
|
18 |
-
if os.path.isdir(os.path.join(base_bm_input_path, model_name)):
|
19 |
-
for task_log_file in os.listdir(os.path.join(base_bm_input_path, model_name)):
|
20 |
-
with open(os.path.join(base_bm_input_path, model_name, task_log_file), "r") as f:
|
21 |
-
result = json.load(f)
|
22 |
-
task_name = result["eval"]["task"].split("/")[-1]
|
23 |
-
log_file_map[model_name][task_name] = task_log_file
|
24 |
-
|
25 |
-
for model_name in AGENTIC_LOG_MODEL_NAME_MAP.keys():
|
26 |
-
log_file_path = os.path.join(agentic_bm_input_path, AGENTIC_LOG_MODEL_NAME_MAP[model_name])
|
27 |
-
if os.path.isdir(log_file_path):
|
28 |
-
for task in AGENTIC_TASKS:
|
29 |
-
for task_log_file in os.listdir(os.path.join(log_file_path, task)):
|
30 |
-
if task_log_file.endswith(".json"):
|
31 |
-
with open(os.path.join(log_file_path, task, task_log_file), "r") as f:
|
32 |
-
result = json.load(f)
|
33 |
-
task_name = result["eval"]["task"].split("/")[-1]
|
34 |
-
log_file_map[model_name][task_name] = task_log_file
|
35 |
-
|
36 |
-
with open("./inspect_log_file_names.json", "w") as f:
|
37 |
-
json.dump(log_file_map, f, indent=4)
|
38 |
-
|
39 |
-
|
40 |
-
if __name__ == "__main__":
|
41 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data/inspect_log_file_names.json
DELETED
@@ -1,200 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"gemini-1.5-pro": {
|
3 |
-
"mmlu": "2024-11-04T16-56-26-05-00_mmlu_Z9KrcK7x4ZLAR5nJ9JaVUe.json",
|
4 |
-
"humaneval": "2024-11-04T12-43-07-05-00_humaneval_5JBjtymGtK23qwVKxqidhV.json",
|
5 |
-
"mmmu_multiple_choice": "2025-01-20T23-16-04-05-00_mmmu-multiple-choice_NLmxmHYt6CJymRVVa5UsbD.json",
|
6 |
-
"mmlu_pro": "2024-11-04T20-13-09-05-00_mmlu-pro_Hv2ujvKLV6H7ZwQu2q8LNw.json",
|
7 |
-
"math": "2024-11-04T15-48-46-05-00_math_9DAZmGEfhpa3nUcmMAwqZe.json",
|
8 |
-
"arc_easy": "2024-11-04T12-31-43-05-00_arc-easy_eGxYWywpLuREcaCKvHa8Uk.json",
|
9 |
-
"mmmu_open": "2025-01-20T23-19-25-05-00_mmmu-open_CDbtEQ7tjs5zkj4ScBbzod.json",
|
10 |
-
"gsm8k": "2024-11-04T15-15-26-05-00_gsm8k_cTebw3ugfrVz3dyPwxtdUZ.json",
|
11 |
-
"gpqa_diamond": "2024-11-05T09-56-31-05-00_gpqa-diamond_FBq2bnoyGYQ3NF96xQw8iy.json",
|
12 |
-
"ifeval": "2024-11-04T12-43-32-05-00_ifeval_mSwZ7AwA7akj5PjZbQMjgC.json",
|
13 |
-
"winogrande": "2024-11-04T12-40-46-05-00_winogrande_5SmD6rx47zmZvHHkQSSfHK.json",
|
14 |
-
"arc_challenge": "2024-11-04T12-37-36-05-00_arc-challenge_5VVApyQD22QpJoMm53EMdU.json",
|
15 |
-
"drop": "2024-11-04T12-44-32-05-00_drop_9dzPKVJojSVsxmiBFnej2m.json",
|
16 |
-
"hellaswag": "2024-11-05T13-14-31-05-00_hellaswag_N98eeftuY2pucRtgpUYk5m.json",
|
17 |
-
"gaia": "2025-01-21T15-33-29-05-00_gemini-1.5-pro_gaia_merged.json",
|
18 |
-
"gdm_intercode_ctf": "2025-01-21T23-59-58+00-00_gemini-1.5-pro_gdm-intercode-ctf_merged.json",
|
19 |
-
"gdm_in_house_ctf": "2025-01-22T03-42-16+00-00_gemini-1.5-pro_gdm-in-house-ctf.json",
|
20 |
-
"agentharm_benign": "2025-01-21T13-18-51-08-00_agentharm-benign_gP3pQPxAuCtFLiHzt2Egt7.json",
|
21 |
-
"agentharm": "2025-01-21T12-45-43-08-00_agentharm_VmD26soLwmRgWPo3hpRHBr.json",
|
22 |
-
"swe_bench": "2025-01-22T03-00-08+00-00_google-gemini-1.5-pro.json"
|
23 |
-
},
|
24 |
-
"gemini-1.5-flash": {
|
25 |
-
"gpqa_diamond": "2024-11-04T12-47-34-05-00_gpqa-diamond_cL5kQj8DWbRfxz79piTSdy.json",
|
26 |
-
"arc_challenge": "2024-11-04T12-45-59-05-00_arc-challenge_YQLMHfEXqeYgGJY86EB9bp.json",
|
27 |
-
"math": "2024-11-04T15-25-38-05-00_math_eaYBRMFgo8p6VUUCYxnCWj.json",
|
28 |
-
"mmmu_open": "2025-01-20T23-23-50-05-00_mmmu-open_L7CnETP7d49axc7L8ChEZ4.json",
|
29 |
-
"drop": "2024-11-04T12-52-08-05-00_drop_5i253AQzbENgHTYN4ATemV.json",
|
30 |
-
"mmlu_pro": "2024-11-04T19-44-13-05-00_mmlu-pro_8GrR6wUsYNkthiZNMmLa8y.json",
|
31 |
-
"ifeval": "2024-11-04T12-51-30-05-00_ifeval_ZATErMbLHoyxh4kDaSqy8j.json",
|
32 |
-
"hellaswag": "2024-11-05T23-19-25-05-00_hellaswag_MRffohuzgVjighGb8FoqSJ.json",
|
33 |
-
"winogrande": "2024-11-04T12-48-29-05-00_winogrande_Hmqo6Ydz3nfCnQAdUwgrbD.json",
|
34 |
-
"humaneval": "2024-11-04T12-50-47-05-00_humaneval_9j4rYguKeKmxEoD9VuddwX.json",
|
35 |
-
"arc_easy": "2024-11-04T12-39-50-05-00_arc-easy_NwmTEw6C8VSCXzzwZCFy48.json",
|
36 |
-
"gsm8k": "2024-11-04T15-22-21-05-00_gsm8k_hdJs3Z6XzpR5netTcWLXJT.json",
|
37 |
-
"mmlu": "2024-11-04T16-26-13-05-00_mmlu_QvfQ46qJen2bvxiktHu86H.json",
|
38 |
-
"mmmu_multiple_choice": "2025-01-20T23-21-33-05-00_mmmu-multiple-choice_3huWbH3SVWx7NTGwYoKbBD.json"
|
39 |
-
},
|
40 |
-
"o3-mini": {
|
41 |
-
"math": "2025-02-06T18-33-30-05-00_math_86Gx8n4BxhpyfaSHmRcCUm.json",
|
42 |
-
"humaneval": "2025-02-06T20-58-48-05-00_humaneval_Dkod7CS9RmbbogYx9aEXtx.json",
|
43 |
-
"mmlu_pro": "2025-02-06T19-49-27-05-00_mmlu-pro_jz9woKfdKt8VMzqNFsy7kY.json",
|
44 |
-
"gpqa_diamond": "2025-02-06T17-57-54-05-00_gpqa-diamond_2znyMtdc7X4LJufxXeXA8Z.json",
|
45 |
-
"winogrande": "2025-02-06T22-50-40-05-00_winogrande_VsTW2uU2Kj66YoNoFfRfUj.json",
|
46 |
-
"gsm8k": "2025-02-06T18-23-05-05-00_gsm8k_d523pJzkcvobxamhhobCRb.json",
|
47 |
-
"arc_challenge": "2025-02-06T17-53-30-05-00_arc-challenge_AYFHec7wmd4jELF2Rgzfya.json",
|
48 |
-
"arc_easy": "2025-02-06T17-45-57-05-00_arc-easy_Nd8NP3K48tvwLVZb8kXDwg.json",
|
49 |
-
"gaia": "2025-02-05T23-21-20+00-00_gaia_hyMq8MzMm6NgAeq3dNqZSU.json",
|
50 |
-
"gdm_intercode_ctf": "2025-02-05T21-43-18+00-00_gdm-intercode-ctf_gdm29C6DuTEsX9qm9ymmrC.json",
|
51 |
-
"gdm_in_house_ctf": "2025-02-05T23-59-08+00-00_gdm-in-house-ctf_2zkAX5nkJoxDnVKpJL9VgW.json",
|
52 |
-
"agentharm_benign": "2025-02-03T18-49-08-08-00_agentharm-benign_Gv94YFpAXaaCJqe3Fc6yr3.json",
|
53 |
-
"agentharm": "2025-02-03T18-17-03-08-00_agentharm_DmN6i5HrgXHNARjsuSewjg.json",
|
54 |
-
"swe_bench": "2025-02-03T06-49-09+00-00_openai-o3-mini.json"
|
55 |
-
},
|
56 |
-
"DeepSeek-R1": {
|
57 |
-
"mmlu_pro": "2025-02-12T11-02-35-05-00_mmlu-pro_BhD89DYN9KM3k4weSDfaQK.json",
|
58 |
-
"humaneval": "2025-02-03T11-45-22-05-00_humaneval_hnkHWYqrb5HxiBt2CWzCnq.json",
|
59 |
-
"math": "2025-02-11T11-38-10-05-00_math_ZYFSqsWsmP5kLRLHEMWULU.json",
|
60 |
-
"gsm8k": "2025-02-02T16-28-05-05-00_gsm8k_YMw6WiZkgTBQ54z5UHtDDX.json",
|
61 |
-
"arc_challenge": "2025-01-30T15-42-39-05-00_arc-challenge_CviW9ro6rKBbctkwJzQstp.json",
|
62 |
-
"winogrande": "2025-02-04T00-25-12-05-00_winogrande_NPgTbtqom2QSPKxeThWrdZ.json",
|
63 |
-
"arc_easy": "2025-01-30T12-48-35-05-00_arc-easy_SvRDfqsHDECQtvNU7rodZH.json",
|
64 |
-
"gpqa_diamond": "2025-02-11T11-37-45-05-00_gpqa-diamond_MwnVeLwyuiEAALr3M5q3dn.json"
|
65 |
-
},
|
66 |
-
"o1": {
|
67 |
-
"winogrande": "2025-01-20T16-46-06-05-00_winogrande_YUtAdEsForRffqe4Sm3wtR.json",
|
68 |
-
"humaneval": "2025-01-17T14-59-12-05-00_humaneval_RRL8GMy9NakTxUHsDVWNng.json",
|
69 |
-
"mmmu_open": "2025-01-20T22-48-09-05-00_mmmu-open_oBzxJBYbvnktbbAwhoCrYK.json",
|
70 |
-
"math": "2025-01-17T15-03-22-05-00_math_6BbvHFF8hLMsVYozyNLbyQ.json",
|
71 |
-
"arc_easy": "2025-01-17T11-29-26-05-00_arc-easy_DFbir4BdgQDbKd52r7tRKR.json",
|
72 |
-
"arc_challenge": "2025-01-17T11-44-42-05-00_arc-challenge_PsWXaBqrgv3EcTZC55gRzJ.json",
|
73 |
-
"gsm8k": "2025-01-17T12-56-38-05-00_gsm8k_iD8275qeyNTgX523pn45bF.json",
|
74 |
-
"gpqa_diamond": "2025-01-17T11-53-53-05-00_gpqa-diamond_EJV7ULFSQLRoFTEqsv3t6q.json",
|
75 |
-
"mmlu_pro": "2025-01-20T14-02-37-05-00_mmlu-pro_EvDzvqaahQwhv6fJovN4BT.json",
|
76 |
-
"mmmu_multiple_choice": "2025-01-20T21-04-57-05-00_mmmu-multiple-choice_MctxjookaeTLCL8KpUeazT.json",
|
77 |
-
"gaia": "2025-01-22T13-42-00-05-00_o1_gaia_merged.json",
|
78 |
-
"gdm_intercode_ctf": "2025-01-22T20-46-35+00-00_o1_gdm-intercode-ctf_merged.json",
|
79 |
-
"gdm_in_house_ctf": "2025-01-22T05-52-25+00-00_o1_gdm-in-house-ctf.json",
|
80 |
-
"agentharm": "2025-01-21T09-05-42-08-00_agentharm_UGDq2yJeLAnPH6p7FgDgD8.json",
|
81 |
-
"agentharm_benign": "2025-01-21T18-20-15-08-00_agentharm-benign_bkW2Bf5xLyDQdNtfLdjCpJ.json",
|
82 |
-
"swe_bench": "2025-01-21T17-42-11+00-00_openai-o1.json"
|
83 |
-
},
|
84 |
-
"claude-3-5-sonnet-20241022": {
|
85 |
-
"mmmu_multiple_choice": "2025-01-21T11-20-03-05-00_mmmu-multiple-choice_CWhKvGdoFo6pdHhDyi9GNm.json",
|
86 |
-
"mmlu_pro": "2025-01-16T19-01-05-05-00_mmlu-pro_3vi84or97gQupuj5sT6vgZ.json",
|
87 |
-
"hellaswag": "2025-01-15T15-09-33-05-00_hellaswag_QXqFxojvSToMu8ckHEMLkB.json",
|
88 |
-
"gpqa_diamond": "2025-01-15T13-56-36-05-00_gpqa-diamond_eg4gFaMRENjnnYvQNtSB59.json",
|
89 |
-
"gsm8k": "2025-01-15T14-23-25-05-00_gsm8k_nHB8Z4uZAwRAZFYpKmTptA.json",
|
90 |
-
"mmmu_open": "2025-01-21T11-24-21-05-00_mmmu-open_SSjv3Dq9gZkEEUnvJUd5xf.json",
|
91 |
-
"arc_easy": "2025-01-15T10-06-24-05-00_arc-easy_oBReQZQM5SAwMMD2jFshPb.json",
|
92 |
-
"arc_challenge": "2025-01-15T10-12-11-05-00_arc-challenge_X8i6caCzkcQo5AT5zXkXso.json",
|
93 |
-
"mmlu": "2025-01-16T15-16-51-05-00_mmlu_NFDs2kxmh3kQEbpbd8sz3w.json",
|
94 |
-
"math": "2025-01-16T12-29-54-05-00_math_NvNQU58M8r3fpiwPGnvq8h.json",
|
95 |
-
"ifeval": "2025-01-16T11-28-44-05-00_ifeval_fmWxch4ZjbmYCST6yUZsdV.json",
|
96 |
-
"humaneval": "2025-01-16T11-26-12-05-00_humaneval_kUASiaNd9uZfWvCwYHhdF5.json",
|
97 |
-
"winogrande": "2025-01-16T22-09-41-05-00_winogrande_mSWGAKg75E5RP79KWizvb9.json",
|
98 |
-
"drop": "2025-01-15T10-15-15-05-00_drop_Z9A2Y84HYponNxnzNT9TNq.json",
|
99 |
-
"gaia": "2025-01-12T23-57-37-05-00_claude-3-5-sonnet_gaia_merged.json",
|
100 |
-
"gdm_intercode_ctf": "2025-01-11T02-47-45-05-00_claude-3-5-sonnet_gdm-intercode-ctf_merged.json",
|
101 |
-
"gdm_in_house_ctf": "2025-01-11T07-41-14+00-00_claude-3-5-sonnet_gdm-in-house-ctf.json",
|
102 |
-
"agentharm_benign": "2025-01-21T15-09-48-08-00_agentharm-benign_A3uBBWNvv88P5BsgqwFCfg.json",
|
103 |
-
"agentharm": "2025-01-15T08-05-14-08-00_agentharm_VJGhWKLrVLdQczBZVgCXHc.json",
|
104 |
-
"swe_bench": "2025-01-16T18-56-55+00-00_anthropic-claude-3-5-sonnet.json"
|
105 |
-
},
|
106 |
-
"c4ai-command-r-plus": {
|
107 |
-
"ifeval": "2024-10-30T17-23-04-04-00_ifeval_RGucUMwdGmUnRpqyMTZTzW.json",
|
108 |
-
"winogrande": "2024-10-30T14-42-18-04-00_winogrande_bY8yg7aRR5dCCK7NDCZEcc.json",
|
109 |
-
"arc_challenge": "2024-10-29T17-30-03-04-00_arc-challenge_XB7LURXEGaxskWuLtYwdnW.json",
|
110 |
-
"drop": "2024-10-30T12-06-30-04-00_drop_itY9cLiYAW2BF7NTeDceNd.json",
|
111 |
-
"math": "2024-10-30T17-26-34-04-00_math_kohBUMpMFuMsR4jz4vUNWM.json",
|
112 |
-
"gpqa_diamond": "2024-10-29T22-47-45-04-00_gpqa-diamond_JKpb6ya4pec9hh7uovPPCZ.json",
|
113 |
-
"mmlu_pro": "2024-10-31T01-11-38-04-00_mmlu-pro_gZVAuy3zMKR23BieM5PqAX.json",
|
114 |
-
"humaneval": "2024-10-30T17-22-23-04-00_humaneval_5ByPqUhoofSbKgvsUQNFCX.json",
|
115 |
-
"gsm8k": "2024-10-30T15-03-35-04-00_gsm8k_QxbfbriJsKGQAg96JyjkoT.json",
|
116 |
-
"hellaswag": "2024-10-30T15-18-17-04-00_hellaswag_UYyBTR6N8VJnKRmnbCrB8N.json",
|
117 |
-
"mmlu": "2024-10-30T21-55-26-04-00_mmlu_JUPPLTzfe3Kme6UuorPTqg.json",
|
118 |
-
"arc_easy": "2024-10-29T17-10-40-04-00_arc-easy_UvprihBMLXPF8JENVLRkdx.json"
|
119 |
-
},
|
120 |
-
"gpt-4o-mini": {
|
121 |
-
"drop": "2024-10-30T17-36-25-04-00_drop_6TzJGqqEkpFUCxGD4QejV6.json",
|
122 |
-
"humaneval": "2024-10-30T21-14-41-04-00_humaneval_Z9aXdUERuwYxoTheZ5GANC.json",
|
123 |
-
"gpqa_diamond": "2024-10-30T19-31-26-04-00_gpqa-diamond_7aNe9wQiQKpNN96mfaWBPg.json",
|
124 |
-
"mmmu_open": "2025-01-20T23-13-27-05-00_mmmu-open_GWi6XNYUSLq99BdabtScGm.json",
|
125 |
-
"arc_challenge": "2024-10-30T17-34-51-04-00_arc-challenge_FbGgLswBZbRE4EhWiMyRt6.json",
|
126 |
-
"mmlu": "2024-10-31T10-49-43-04-00_mmlu_oGb9mspeGbYS2gfbkknskN.json",
|
127 |
-
"hellaswag": "2024-10-30T19-35-34-04-00_hellaswag_2SAz3cvMpDxFaApdHDR3s4.json",
|
128 |
-
"ifeval": "2024-10-30T21-15-06-04-00_ifeval_nYs9KujQMQjcpbpbLtVx8G.json",
|
129 |
-
"mmmu_multiple_choice": "2025-01-20T23-10-01-05-00_mmmu-multiple-choice_c5rLkrXkV83udX6DVJui5F.json",
|
130 |
-
"arc_easy": "2024-10-30T17-29-56-04-00_arc-easy_XcEzqqPqJsRV29NqYDfnNo.json",
|
131 |
-
"winogrande": "2024-10-31T00-59-07-04-00_winogrande_Ci55vHvbGGW38zVpMCwtWa.json",
|
132 |
-
"mmlu_pro": "2024-10-30T22-43-30-04-00_mmlu-pro_Dc2uu3EV7MJtjg6gg5Y9qH.json",
|
133 |
-
"math": "2024-10-30T21-15-49-04-00_math_YsWdRzpqMq2dqQ9SPKfack.json",
|
134 |
-
"gsm8k": "2024-10-30T19-32-39-04-00_gsm8k_nLSssETKDDWNktAFWnVwfv.json"
|
135 |
-
},
|
136 |
-
"Meta-Llama-3.1-70B-Instruct": {
|
137 |
-
"hellaswag": "2024-10-30T00-45-54-04-00_hellaswag_BKfQG9yGAr383MGnooMLBH.json",
|
138 |
-
"drop": "2024-10-29T21-01-02-04-00_drop_LzAWvLWkNrNKu5qf56wXRo.json",
|
139 |
-
"gpqa_diamond": "2024-10-29T23-41-39-04-00_gpqa-diamond_TdLdYmVM6GCVMAECcXkuhj.json",
|
140 |
-
"winogrande": "2024-10-30T09-20-56-04-00_winogrande_WnUgkSRhSMvh3zUjnuJWQZ.json",
|
141 |
-
"gsm8k": "2024-10-30T00-03-31-04-00_gsm8k_bKsUfCAfcmBCeryboNaLoX.json",
|
142 |
-
"math": "2024-10-30T02-34-50-04-00_math_2xiNcrGih26uzJdG4q88bM.json",
|
143 |
-
"ifeval": "2024-10-30T02-29-32-04-00_ifeval_Dwh3CF2ZYFrvw7UcTwrsvK.json",
|
144 |
-
"arc_challenge": "2024-10-29T20-58-56-04-00_arc-challenge_oFL5wFjT7KwNFhMFfe72JN.json",
|
145 |
-
"arc_easy": "2024-10-29T20-53-12-04-00_arc-easy_UXzR7cDeNteP39NoXUYnhm.json",
|
146 |
-
"mmlu_pro": "2024-10-30T06-11-16-04-00_mmlu-pro_oQiEBJdeKtEEt4cm9KL7uy.json",
|
147 |
-
"humaneval": "2024-10-30T02-28-25-04-00_humaneval_KcJV2rHuHJ2JLxijihEkcW.json",
|
148 |
-
"mmlu": "2024-10-30T03-51-50-04-00_mmlu_6SNjs2QmPRvqGnvbnNtaqb.json"
|
149 |
-
},
|
150 |
-
"gpt-4o": {
|
151 |
-
"gpqa_diamond": "2024-10-31T03-29-33-04-00_gpqa-diamond_nFmRv5MJiYjHjezmq4V6Va.json",
|
152 |
-
"arc_challenge": "2024-10-31T01-45-55-04-00_arc-challenge_nrsPPxh4DpzgLPQDFdcfVp.json",
|
153 |
-
"gsm8k": "2024-10-31T03-31-16-04-00_gsm8k_jVXeSvHowbietZCFsFYCwB.json",
|
154 |
-
"mmlu": "2024-10-31T10-49-43-04-00_mmlu_GarLpfQFSpM3C22nbbGp54.json",
|
155 |
-
"ifeval": "2024-10-31T05-00-11-04-00_ifeval_jxreUu8JqRdkrcHP4E3hLR.json",
|
156 |
-
"mmlu_pro": "2024-10-31T06-59-42-04-00_mmlu-pro_EuAKDwAWSfNVpqyyqrf2Ba.json",
|
157 |
-
"mmmu_open": "2025-01-20T23-07-46-05-00_mmmu-open_d3Q2HvuPZzEX6FAM4NBhnp.json",
|
158 |
-
"winogrande": "2024-10-31T09-02-03-04-00_winogrande_44kKF7M9mKoqVC7ixZVXuq.json",
|
159 |
-
"drop": "2024-10-31T01-47-20-04-00_drop_3gxDcn6vUoR3nvHX9BcSq4.json",
|
160 |
-
"arc_easy": "2024-10-31T01-41-34-04-00_arc-easy_nUavRHdiRVfrxo6dmCPadh.json",
|
161 |
-
"mmmu_multiple_choice": "2025-01-20T23-03-21-05-00_mmmu-multiple-choice_eoycAFLMirSqiURdXmBP2e.json",
|
162 |
-
"humaneval": "2024-10-31T04-59-42-04-00_humaneval_nmJcd84CcNKjWS8fBfMbZM.json",
|
163 |
-
"math": "2024-10-31T05-01-22-04-00_math_cDSpKPp3nLrFy8uYfYKEbM.json",
|
164 |
-
"hellaswag": "2024-10-31T03-33-47-04-00_hellaswag_JNnnPuz3dhZRpyXzizMUBF.json",
|
165 |
-
"gaia": "2025-01-13T15-53-22+00-00_gpt-4o_gaia_merged.json",
|
166 |
-
"gdm_intercode_ctf": "2025-01-08T10-06-29-05-00_gpt-4o_gdm-intercode-ctf_merged.json",
|
167 |
-
"gdm_in_house_ctf": "2025-01-11T07-02-14+00-00_gpt-4o_gdm-in-house-ctf.json",
|
168 |
-
"agentharm": "2025-01-07T16-34-15-08-00_agentharm_UfSoyHEAH2E5RVdrPVUemy.json",
|
169 |
-
"agentharm_benign": "2025-01-21T13-45-18-08-00_agentharm-benign_8DhGJqEAvw6o8uCv4a4dVz.json",
|
170 |
-
"swe_bench": "2025-01-14T23-09-10+00-00_openai-gpt-4o.json"
|
171 |
-
},
|
172 |
-
"Mistral-Large-Instruct-2407": {
|
173 |
-
"drop": "2024-10-31T01-56-12-04-00_drop_NtvuCoU2LoMbH8DztcCTen.json",
|
174 |
-
"ifeval": "2024-10-31T06-30-16-04-00_ifeval_TLkvCSFEWo4PLv6hAha7YB.json",
|
175 |
-
"mmlu": "2024-10-31T07-21-48-04-00_mmlu_YnUhmHoStr3WuJdchWmNPt.json",
|
176 |
-
"gpqa_diamond": "2024-10-31T04-22-52-04-00_gpqa-diamond_SuZUZxGdqS2ZecbLRNkKd4.json",
|
177 |
-
"gsm8k": "2024-10-31T04-28-49-04-00_gsm8k_5tQp9tbwUMj6NpjNKCAfVm.json",
|
178 |
-
"math": "2024-10-31T06-33-09-04-00_math_2CmjBedAfUxqvmcHRdBgyB.json",
|
179 |
-
"arc_easy": "2024-10-31T01-48-39-04-00_arc-easy_YbfuBT3usZXt2xgZkkR5dq.json",
|
180 |
-
"mmlu_pro": "2024-10-31T09-41-25-04-00_mmlu-pro_fyYT4aabPesfY5TpzFMPnd.json",
|
181 |
-
"humaneval": "2024-10-31T06-29-24-04-00_humaneval_nu8SUSGekKJWB8HLKDigYK.json",
|
182 |
-
"hellaswag": "2024-10-31T04-50-00-04-00_hellaswag_ZzQoZ6gkRQsTzMhQr7GYNn.json",
|
183 |
-
"arc_challenge": "2024-10-31T01-54-13-04-00_arc-challenge_WfQRhMkFcywefpU46isBVP.json",
|
184 |
-
"winogrande": "2024-10-31T11-57-58-04-00_winogrande_TP3UGwpp37Dyv6ks9Ty5Hk.json"
|
185 |
-
},
|
186 |
-
"Qwen2.5-72B-Instruct": {
|
187 |
-
"arc_challenge": "2024-10-31T13-46-34-04-00_arc-challenge_FSybKYYwpXVLQag8VwpjKe.json",
|
188 |
-
"mmlu_pro": "2024-11-01T20-31-04-04-00_mmlu-pro_2TfSPmsVmKatntHy2CnR7A.json",
|
189 |
-
"gpqa_diamond": "2024-10-31T13-48-32-04-00_gpqa-diamond_8qSySicySUyNvRRYVFBKLU.json",
|
190 |
-
"winogrande": "2024-10-31T14-46-29-04-00_winogrande_CX692dYh53gJ6JigT9GMpa.json",
|
191 |
-
"mmlu": "2024-11-01T10-08-50-04-00_mmlu_AgK27yYvmAo2LxotBH7ZL9.json",
|
192 |
-
"hellaswag": "2024-11-01T02-55-55-04-00_hellaswag_RSk8rGcQWg3HRrLffTNoiM.json",
|
193 |
-
"gsm8k": "2024-11-01T01-15-16-04-00_gsm8k_3h4W6xZjXpz9oCwtgKNYzo.json",
|
194 |
-
"arc_easy": "2024-10-31T13-40-08-04-00_arc-easy_3JUyzfoEHxhSBUdCU2AaVC.json",
|
195 |
-
"math": "2024-11-01T10-06-46-04-00_math_UUpS2R9eQc9KxBxkanT2gE.json",
|
196 |
-
"ifeval": "2024-10-31T14-51-45-04-00_ifeval_VGxA7gTZLZSruceM9Ci37C.json",
|
197 |
-
"humaneval": "2024-10-31T14-49-39-04-00_humaneval_9u7khnxivCDroJoPNRFpjs.json",
|
198 |
-
"drop": "2024-10-31T15-03-20-04-00_drop_DDLi98VhiV2bLzuw7fx6H4.json"
|
199 |
-
}
|
200 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data/populate_results.py
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
|
3 |
-
def get_log_url(model_name: str, log_file_name: str) -> str:
|
4 |
-
"""Returns the URL to the log file for a given model and benchmark"""
|
5 |
-
if log_file_name is None:
|
6 |
-
return None
|
7 |
-
else:
|
8 |
-
# replace .json with .eval
|
9 |
-
log_file_name = log_file_name.replace(".json", ".eval")
|
10 |
-
return f"https://storage.googleapis.com/inspect-evals/eval/{model_name}/index.html?log_file=logs/logs/{log_file_name}"
|
11 |
-
|
12 |
-
def main():
|
13 |
-
# Load the results and log file names
|
14 |
-
with open("data/results.json", "r") as f:
|
15 |
-
results = json.load(f)
|
16 |
-
|
17 |
-
with open("data/inspect_log_file_names.json", "r") as f:
|
18 |
-
log_files = json.load(f)
|
19 |
-
|
20 |
-
# For each model in results
|
21 |
-
for model_name, model_data in results.items():
|
22 |
-
# Get the log files for this model
|
23 |
-
model_logs = log_files.get(model_name, {})
|
24 |
-
|
25 |
-
# For each task in the model's results
|
26 |
-
for task_name, task_data in model_data["results"].items():
|
27 |
-
# Get the log file name for this task
|
28 |
-
log_file_name = model_logs.get(task_name)
|
29 |
-
|
30 |
-
# Add the log URL to the task data
|
31 |
-
if log_file_name:
|
32 |
-
task_data["log_url"] = get_log_url(model_name, log_file_name)
|
33 |
-
else:
|
34 |
-
task_data["log_url"] = None
|
35 |
-
|
36 |
-
# Save the updated results
|
37 |
-
with open("data/results_with_logs.json", "w") as f:
|
38 |
-
json.dump(results, f, indent=4)
|
39 |
-
|
40 |
-
if __name__ == "__main__":
|
41 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data/results.json.bak
DELETED
@@ -1,760 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"DeepSeek-R1": {
|
3 |
-
"config": {
|
4 |
-
"model_name": "DeepSeek-R1",
|
5 |
-
"model_sha": "https://api-docs.deepseek.com/news/news250120",
|
6 |
-
"model_dtype": "torch.float16"
|
7 |
-
},
|
8 |
-
"results": {
|
9 |
-
"mmlu_pro": {
|
10 |
-
"accuracy": 0.8382646276595744
|
11 |
-
},
|
12 |
-
"humaneval": {
|
13 |
-
"mean": 0.9567901234567902
|
14 |
-
},
|
15 |
-
"math": {
|
16 |
-
"accuracy": 0.9272
|
17 |
-
},
|
18 |
-
"gsm8k": {
|
19 |
-
"accuracy": 0.954510993176649
|
20 |
-
},
|
21 |
-
"arc_challenge": {
|
22 |
-
"accuracy": 0.9667235494880546
|
23 |
-
},
|
24 |
-
"winogrande": {
|
25 |
-
"accuracy": 0.9179163378058406
|
26 |
-
},
|
27 |
-
"arc_easy": {
|
28 |
-
"accuracy": 0.9873737373737373
|
29 |
-
},
|
30 |
-
"gpqa_diamond": {
|
31 |
-
"accuracy": 0.7045454545454546
|
32 |
-
},
|
33 |
-
"drop": {
|
34 |
-
"mean": null
|
35 |
-
},
|
36 |
-
"hellaswag": {
|
37 |
-
"accuracy": null
|
38 |
-
},
|
39 |
-
"ifeval": {
|
40 |
-
"final_acc": null
|
41 |
-
},
|
42 |
-
"mmlu": {
|
43 |
-
"accuracy": null
|
44 |
-
},
|
45 |
-
"mmmu_multiple_choice": {
|
46 |
-
"accuracy": null
|
47 |
-
},
|
48 |
-
"mmmu_open": {
|
49 |
-
"accuracy": null
|
50 |
-
},
|
51 |
-
"gaia": {
|
52 |
-
"accuracy": null
|
53 |
-
},
|
54 |
-
"gdm_intercode_ctf": {
|
55 |
-
"accuracy": null
|
56 |
-
},
|
57 |
-
"gdm_in_house_ctf": {
|
58 |
-
"accuracy": null
|
59 |
-
},
|
60 |
-
"agentharm": {
|
61 |
-
"avg_score": null
|
62 |
-
},
|
63 |
-
"agentharm_benign": {
|
64 |
-
"avg_score": null
|
65 |
-
},
|
66 |
-
"swe_bench": {
|
67 |
-
"mean": null
|
68 |
-
}
|
69 |
-
}
|
70 |
-
},
|
71 |
-
"Meta-Llama-3.1-70B-Instruct": {
|
72 |
-
"config": {
|
73 |
-
"model_name": "Meta-Llama-3.1-70B-Instruct",
|
74 |
-
"model_sha": "https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct",
|
75 |
-
"model_dtype": "torch.float16"
|
76 |
-
},
|
77 |
-
"results": {
|
78 |
-
"hellaswag": {
|
79 |
-
"accuracy": 0.869946225851424
|
80 |
-
},
|
81 |
-
"drop": {
|
82 |
-
"mean": 0.8811263765076035
|
83 |
-
},
|
84 |
-
"gpqa_diamond": {
|
85 |
-
"accuracy": 0.4318181818181818
|
86 |
-
},
|
87 |
-
"winogrande": {
|
88 |
-
"accuracy": 0.8666140489344909
|
89 |
-
},
|
90 |
-
"gsm8k": {
|
91 |
-
"accuracy": 0.9469294920394238
|
92 |
-
},
|
93 |
-
"math": {
|
94 |
-
"accuracy": 0.6004
|
95 |
-
},
|
96 |
-
"ifeval": {
|
97 |
-
"final_acc": 0.8604907201780166
|
98 |
-
},
|
99 |
-
"arc_challenge": {
|
100 |
-
"accuracy": 0.9445392491467577
|
101 |
-
},
|
102 |
-
"arc_easy": {
|
103 |
-
"accuracy": 0.9823232323232324
|
104 |
-
},
|
105 |
-
"mmlu_pro": {
|
106 |
-
"accuracy": 0.6688829787234043
|
107 |
-
},
|
108 |
-
"humaneval": {
|
109 |
-
"mean": 0.7865853658536586
|
110 |
-
},
|
111 |
-
"mmlu": {
|
112 |
-
"accuracy": 0.8033755875231449
|
113 |
-
},
|
114 |
-
"mmmu_multiple_choice": {
|
115 |
-
"accuracy": null
|
116 |
-
},
|
117 |
-
"mmmu_open": {
|
118 |
-
"accuracy": null
|
119 |
-
},
|
120 |
-
"gaia": {
|
121 |
-
"accuracy": null
|
122 |
-
},
|
123 |
-
"gdm_intercode_ctf": {
|
124 |
-
"accuracy": null
|
125 |
-
},
|
126 |
-
"gdm_in_house_ctf": {
|
127 |
-
"accuracy": null
|
128 |
-
},
|
129 |
-
"agentharm": {
|
130 |
-
"avg_score": null
|
131 |
-
},
|
132 |
-
"agentharm_benign": {
|
133 |
-
"avg_score": null
|
134 |
-
},
|
135 |
-
"swe_bench": {
|
136 |
-
"mean": null
|
137 |
-
}
|
138 |
-
}
|
139 |
-
},
|
140 |
-
"Mistral-Large-Instruct-2407": {
|
141 |
-
"config": {
|
142 |
-
"model_name": "Mistral-Large-Instruct-2407",
|
143 |
-
"model_sha": "https://huggingface.co/mistralai/Mistral-Large-Instruct-2407",
|
144 |
-
"model_dtype": "torch.float16"
|
145 |
-
},
|
146 |
-
"results": {
|
147 |
-
"drop": {
|
148 |
-
"mean": 0.7424257996853698
|
149 |
-
},
|
150 |
-
"ifeval": {
|
151 |
-
"final_acc": 0.8285172231900246
|
152 |
-
},
|
153 |
-
"mmlu": {
|
154 |
-
"accuracy": 0.8035892323030908
|
155 |
-
},
|
156 |
-
"gpqa_diamond": {
|
157 |
-
"accuracy": 0.4734848484848485
|
158 |
-
},
|
159 |
-
"gsm8k": {
|
160 |
-
"accuracy": 0.9378316906747536
|
161 |
-
},
|
162 |
-
"math": {
|
163 |
-
"accuracy": 0.6574
|
164 |
-
},
|
165 |
-
"arc_easy": {
|
166 |
-
"accuracy": 0.9852693602693603
|
167 |
-
},
|
168 |
-
"mmlu_pro": {
|
169 |
-
"accuracy": 0.6942320478723404
|
170 |
-
},
|
171 |
-
"humaneval": {
|
172 |
-
"mean": 0.8658536585365854
|
173 |
-
},
|
174 |
-
"hellaswag": {
|
175 |
-
"accuracy": 0.9047998406691894
|
176 |
-
},
|
177 |
-
"arc_challenge": {
|
178 |
-
"accuracy": 0.9436860068259386
|
179 |
-
},
|
180 |
-
"winogrande": {
|
181 |
-
"accuracy": 0.8547750591949487
|
182 |
-
},
|
183 |
-
"mmmu_multiple_choice": {
|
184 |
-
"accuracy": null
|
185 |
-
},
|
186 |
-
"mmmu_open": {
|
187 |
-
"accuracy": null
|
188 |
-
},
|
189 |
-
"gaia": {
|
190 |
-
"accuracy": null
|
191 |
-
},
|
192 |
-
"gdm_intercode_ctf": {
|
193 |
-
"accuracy": null
|
194 |
-
},
|
195 |
-
"gdm_in_house_ctf": {
|
196 |
-
"accuracy": null
|
197 |
-
},
|
198 |
-
"agentharm": {
|
199 |
-
"avg_score": null
|
200 |
-
},
|
201 |
-
"agentharm_benign": {
|
202 |
-
"avg_score": null
|
203 |
-
},
|
204 |
-
"swe_bench": {
|
205 |
-
"mean": null
|
206 |
-
}
|
207 |
-
}
|
208 |
-
},
|
209 |
-
"c4ai-command-r-plus": {
|
210 |
-
"config": {
|
211 |
-
"model_name": "c4ai-command-r-plus",
|
212 |
-
"model_sha": "https://huggingface.co/CohereForAI/c4ai-command-r-plus"
|
213 |
-
},
|
214 |
-
"results": {
|
215 |
-
"ifeval": {
|
216 |
-
"final_acc": 0.7779591483929307
|
217 |
-
},
|
218 |
-
"winogrande": {
|
219 |
-
"accuracy": 0.7490134175217048
|
220 |
-
},
|
221 |
-
"arc_challenge": {
|
222 |
-
"accuracy": 0.8506825938566553
|
223 |
-
},
|
224 |
-
"drop": {
|
225 |
-
"mean": 0.743557420031463
|
226 |
-
},
|
227 |
-
"math": {
|
228 |
-
"accuracy": 0.2626
|
229 |
-
},
|
230 |
-
"gpqa_diamond": {
|
231 |
-
"accuracy": 0.3194444444444444
|
232 |
-
},
|
233 |
-
"mmlu_pro": {
|
234 |
-
"accuracy": 0.441156914893617
|
235 |
-
},
|
236 |
-
"humaneval": {
|
237 |
-
"mean": 0.6219512195121951
|
238 |
-
},
|
239 |
-
"gsm8k": {
|
240 |
-
"accuracy": 0.7816527672479151
|
241 |
-
},
|
242 |
-
"hellaswag": {
|
243 |
-
"accuracy": 0.7954590718980283
|
244 |
-
},
|
245 |
-
"mmlu": {
|
246 |
-
"accuracy": 0.695128899017234
|
247 |
-
},
|
248 |
-
"arc_easy": {
|
249 |
-
"accuracy": 0.9377104377104377
|
250 |
-
},
|
251 |
-
"mmmu_multiple_choice": {
|
252 |
-
"accuracy": null
|
253 |
-
},
|
254 |
-
"mmmu_open": {
|
255 |
-
"accuracy": null
|
256 |
-
},
|
257 |
-
"gaia": {
|
258 |
-
"accuracy": null
|
259 |
-
},
|
260 |
-
"gdm_intercode_ctf": {
|
261 |
-
"accuracy": null
|
262 |
-
},
|
263 |
-
"gdm_in_house_ctf": {
|
264 |
-
"accuracy": null
|
265 |
-
},
|
266 |
-
"agentharm": {
|
267 |
-
"avg_score": null
|
268 |
-
},
|
269 |
-
"agentharm_benign": {
|
270 |
-
"avg_score": null
|
271 |
-
},
|
272 |
-
"swe_bench": {
|
273 |
-
"mean": null
|
274 |
-
}
|
275 |
-
}
|
276 |
-
},
|
277 |
-
"claude-3-5-sonnet-20241022": {
|
278 |
-
"config": {
|
279 |
-
"model_name": "claude-3-5-sonnet-20241022",
|
280 |
-
"model_sha": "https://www.anthropic.com/claude/sonnet",
|
281 |
-
"model_dtype": "torch.float16"
|
282 |
-
},
|
283 |
-
"results": {
|
284 |
-
"mmmu_multiple_choice": {
|
285 |
-
"accuracy": 0.6481700118063755
|
286 |
-
},
|
287 |
-
"mmlu_pro": {
|
288 |
-
"accuracy": 0.7762632978723404
|
289 |
-
},
|
290 |
-
"hellaswag": {
|
291 |
-
"accuracy": 0.9228241386178052
|
292 |
-
},
|
293 |
-
"gpqa_diamond": {
|
294 |
-
"accuracy": 0.6098484848484849
|
295 |
-
},
|
296 |
-
"gsm8k": {
|
297 |
-
"accuracy": 0.9620924943138741
|
298 |
-
},
|
299 |
-
"mmmu_open": {
|
300 |
-
"accuracy": 0.41509433962264153
|
301 |
-
},
|
302 |
-
"arc_easy": {
|
303 |
-
"accuracy": 0.9915824915824916
|
304 |
-
},
|
305 |
-
"arc_challenge": {
|
306 |
-
"accuracy": 0.9692832764505119
|
307 |
-
},
|
308 |
-
"mmlu": {
|
309 |
-
"accuracy": 0.8665432274604757
|
310 |
-
},
|
311 |
-
"math": {
|
312 |
-
"accuracy": 0.7942
|
313 |
-
},
|
314 |
-
"ifeval": {
|
315 |
-
"final_acc": 0.8958114469607309
|
316 |
-
},
|
317 |
-
"humaneval": {
|
318 |
-
"mean": 0.9451219512195121
|
319 |
-
},
|
320 |
-
"winogrande": {
|
321 |
-
"accuracy": 0.9021310181531176
|
322 |
-
},
|
323 |
-
"drop": {
|
324 |
-
"mean": 0.8977608809648663
|
325 |
-
},
|
326 |
-
"gaia": {
|
327 |
-
"accuracy": 0.3381818181818182
|
328 |
-
},
|
329 |
-
"gdm_intercode_ctf": {
|
330 |
-
"accuracy": 0.8556962025316455
|
331 |
-
},
|
332 |
-
"gdm_in_house_ctf": {
|
333 |
-
"accuracy": 0.6153846153846154
|
334 |
-
},
|
335 |
-
"agentharm": {
|
336 |
-
"avg_score": 0.14767992424242424
|
337 |
-
},
|
338 |
-
"agentharm_benign": {
|
339 |
-
"avg_score": 0.800704570051161
|
340 |
-
},
|
341 |
-
"swe_bench": {
|
342 |
-
"mean": 0.0672
|
343 |
-
}
|
344 |
-
}
|
345 |
-
},
|
346 |
-
"gemini-1.5-flash": {
|
347 |
-
"config": {
|
348 |
-
"model_name": "gemini-1.5-flash",
|
349 |
-
"model_sha": "https://deepmind.google/technologies/gemini/flash",
|
350 |
-
"model_dtype": "torch.float16"
|
351 |
-
},
|
352 |
-
"results": {
|
353 |
-
"gpqa_diamond": {
|
354 |
-
"accuracy": 0.40404040404040403
|
355 |
-
},
|
356 |
-
"arc_challenge": {
|
357 |
-
"accuracy": 0.9308873720136519
|
358 |
-
},
|
359 |
-
"math": {
|
360 |
-
"accuracy": 0.452
|
361 |
-
},
|
362 |
-
"mmmu_open": {
|
363 |
-
"accuracy": 0.16981132075471697
|
364 |
-
},
|
365 |
-
"drop": {
|
366 |
-
"mean": 0.751044572627163
|
367 |
-
},
|
368 |
-
"mmlu_pro": {
|
369 |
-
"accuracy": 0.5993184840425532
|
370 |
-
},
|
371 |
-
"ifeval": {
|
372 |
-
"final_acc": 0.7681296737102001
|
373 |
-
},
|
374 |
-
"hellaswag": {
|
375 |
-
"accuracy": 0.8557060346544513
|
376 |
-
},
|
377 |
-
"winogrande": {
|
378 |
-
"accuracy": 0.7884767166535123
|
379 |
-
},
|
380 |
-
"humaneval": {
|
381 |
-
"mean": 0.7439024390243902
|
382 |
-
},
|
383 |
-
"arc_easy": {
|
384 |
-
"accuracy": 0.984006734006734
|
385 |
-
},
|
386 |
-
"gsm8k": {
|
387 |
-
"accuracy": 0.8582259287338894
|
388 |
-
},
|
389 |
-
"mmlu": {
|
390 |
-
"accuracy": 0.7714713003845606
|
391 |
-
},
|
392 |
-
"mmmu_multiple_choice": {
|
393 |
-
"accuracy": 0.5702479338842975
|
394 |
-
},
|
395 |
-
"gaia": {
|
396 |
-
"accuracy": null
|
397 |
-
},
|
398 |
-
"gdm_intercode_ctf": {
|
399 |
-
"accuracy": null
|
400 |
-
},
|
401 |
-
"gdm_in_house_ctf": {
|
402 |
-
"accuracy": null
|
403 |
-
},
|
404 |
-
"agentharm": {
|
405 |
-
"avg_score": null
|
406 |
-
},
|
407 |
-
"agentharm_benign": {
|
408 |
-
"avg_score": null
|
409 |
-
},
|
410 |
-
"swe_bench": {
|
411 |
-
"mean": null
|
412 |
-
}
|
413 |
-
}
|
414 |
-
},
|
415 |
-
"gemini-1.5-pro": {
|
416 |
-
"config": {
|
417 |
-
"model_name": "gemini-1.5-pro",
|
418 |
-
"model_sha": "https://deepmind.google/technologies/gemini/pro",
|
419 |
-
"model_dtype": "torch.float16"
|
420 |
-
},
|
421 |
-
"results": {
|
422 |
-
"mmlu": {
|
423 |
-
"accuracy": 0.8467454778521578
|
424 |
-
},
|
425 |
-
"humaneval": {
|
426 |
-
"mean": 0.8719512195121951
|
427 |
-
},
|
428 |
-
"mmmu_multiple_choice": {
|
429 |
-
"accuracy": 0.6304604486422668
|
430 |
-
},
|
431 |
-
"mmlu_pro": {
|
432 |
-
"accuracy": 0.7563996010638298
|
433 |
-
},
|
434 |
-
"math": {
|
435 |
-
"accuracy": 0.852
|
436 |
-
},
|
437 |
-
"arc_easy": {
|
438 |
-
"accuracy": 0.9877946127946128
|
439 |
-
},
|
440 |
-
"mmmu_open": {
|
441 |
-
"accuracy": 0.3584905660377358
|
442 |
-
},
|
443 |
-
"gsm8k": {
|
444 |
-
"accuracy": 0.9613343442001516
|
445 |
-
},
|
446 |
-
"gpqa_diamond": {
|
447 |
-
"accuracy": 0.5782828282828283
|
448 |
-
},
|
449 |
-
"ifeval": {
|
450 |
-
"final_acc": 0.8982344623377084
|
451 |
-
},
|
452 |
-
"winogrande": {
|
453 |
-
"accuracy": 0.8768745067087609
|
454 |
-
},
|
455 |
-
"arc_challenge": {
|
456 |
-
"accuracy": 0.9633105802047781
|
457 |
-
},
|
458 |
-
"drop": {
|
459 |
-
"mean": 0.8800912427897221
|
460 |
-
},
|
461 |
-
"hellaswag": {
|
462 |
-
"accuracy": 0.9123680541724756
|
463 |
-
},
|
464 |
-
"gaia": {
|
465 |
-
"accuracy": 0.13818181818181818
|
466 |
-
},
|
467 |
-
"gdm_intercode_ctf": {
|
468 |
-
"accuracy": 0.5291139240506328
|
469 |
-
},
|
470 |
-
"gdm_in_house_ctf": {
|
471 |
-
"accuracy": 0.23076923076923078
|
472 |
-
},
|
473 |
-
"agentharm": {
|
474 |
-
"avg_score": 0.2898649645808737
|
475 |
-
},
|
476 |
-
"agentharm_benign": {
|
477 |
-
"avg_score": 0.5961489079102715
|
478 |
-
},
|
479 |
-
"swe_bench": {
|
480 |
-
"mean": 0.004
|
481 |
-
}
|
482 |
-
}
|
483 |
-
},
|
484 |
-
"gpt-4o": {
|
485 |
-
"config": {
|
486 |
-
"model_name": "gpt-4o",
|
487 |
-
"model_sha": "https://openai.com/index/hello-gpt-4o",
|
488 |
-
"model_dtype": "torch.float16"
|
489 |
-
},
|
490 |
-
"results": {
|
491 |
-
"gpqa_diamond": {
|
492 |
-
"accuracy": 0.51010101010101
|
493 |
-
},
|
494 |
-
"arc_challenge": {
|
495 |
-
"accuracy": 0.9633105802047781
|
496 |
-
},
|
497 |
-
"gsm8k": {
|
498 |
-
"accuracy": 0.9446550416982562
|
499 |
-
},
|
500 |
-
"mmlu": {
|
501 |
-
"accuracy": 0.8435408061529697
|
502 |
-
},
|
503 |
-
"ifeval": {
|
504 |
-
"final_acc": 0.8780386042367585
|
505 |
-
},
|
506 |
-
"mmlu_pro": {
|
507 |
-
"accuracy": 0.7450964095744681
|
508 |
-
},
|
509 |
-
"mmmu_open": {
|
510 |
-
"accuracy": 0.3584905660377358
|
511 |
-
},
|
512 |
-
"winogrande": {
|
513 |
-
"accuracy": 0.9013417521704814
|
514 |
-
},
|
515 |
-
"drop": {
|
516 |
-
"mean": 0.7511693759832198
|
517 |
-
},
|
518 |
-
"arc_easy": {
|
519 |
-
"accuracy": 0.9915824915824916
|
520 |
-
},
|
521 |
-
"mmmu_multiple_choice": {
|
522 |
-
"accuracy": 0.5903187721369539
|
523 |
-
},
|
524 |
-
"humaneval": {
|
525 |
-
"mean": 0.9085365853658537
|
526 |
-
},
|
527 |
-
"math": {
|
528 |
-
"accuracy": 0.7054
|
529 |
-
},
|
530 |
-
"hellaswag": {
|
531 |
-
"accuracy": 0.924317864967138
|
532 |
-
},
|
533 |
-
"gaia": {
|
534 |
-
"accuracy": 0.16606060606060608
|
535 |
-
},
|
536 |
-
"gdm_intercode_ctf": {
|
537 |
-
"accuracy": 0.6379746835443038
|
538 |
-
},
|
539 |
-
"gdm_in_house_ctf": {
|
540 |
-
"accuracy": 0.23076923076923078
|
541 |
-
},
|
542 |
-
"agentharm": {
|
543 |
-
"avg_score": 0.49953844451003543
|
544 |
-
},
|
545 |
-
"agentharm_benign": {
|
546 |
-
"avg_score": 0.8249433048012594
|
547 |
-
},
|
548 |
-
"swe_bench": {
|
549 |
-
"mean": 0.012
|
550 |
-
}
|
551 |
-
}
|
552 |
-
},
|
553 |
-
"gpt-4o-mini": {
|
554 |
-
"config": {
|
555 |
-
"model_name": "gpt-4o-mini",
|
556 |
-
"model_sha": "https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence",
|
557 |
-
"model_dtype": "torch.float16"
|
558 |
-
},
|
559 |
-
"results": {
|
560 |
-
"drop": {
|
561 |
-
"mean": 0.8065915049816466
|
562 |
-
},
|
563 |
-
"humaneval": {
|
564 |
-
"mean": 0.8597560975609756
|
565 |
-
},
|
566 |
-
"gpqa_diamond": {
|
567 |
-
"accuracy": 0.3838383838383838
|
568 |
-
},
|
569 |
-
"mmmu_open": {
|
570 |
-
"accuracy": 0.18867924528301888
|
571 |
-
},
|
572 |
-
"arc_challenge": {
|
573 |
-
"accuracy": 0.9249146757679181
|
574 |
-
},
|
575 |
-
"mmlu": {
|
576 |
-
"accuracy": 0.7698333570716422
|
577 |
-
},
|
578 |
-
"hellaswag": {
|
579 |
-
"accuracy": 0.8750248954391555
|
580 |
-
},
|
581 |
-
"ifeval": {
|
582 |
-
"final_acc": 0.8419061423689144
|
583 |
-
},
|
584 |
-
"mmmu_multiple_choice": {
|
585 |
-
"accuracy": 0.5395513577331759
|
586 |
-
},
|
587 |
-
"arc_easy": {
|
588 |
-
"accuracy": 0.9793771043771043
|
589 |
-
},
|
590 |
-
"winogrande": {
|
591 |
-
"accuracy": 0.7529597474348856
|
592 |
-
},
|
593 |
-
"mmlu_pro": {
|
594 |
-
"accuracy": 0.6396276595744681
|
595 |
-
},
|
596 |
-
"math": {
|
597 |
-
"accuracy": 0.633
|
598 |
-
},
|
599 |
-
"gsm8k": {
|
600 |
-
"accuracy": 0.9181197877179682
|
601 |
-
},
|
602 |
-
"gaia": {
|
603 |
-
"accuracy": null
|
604 |
-
},
|
605 |
-
"gdm_intercode_ctf": {
|
606 |
-
"accuracy": null
|
607 |
-
},
|
608 |
-
"gdm_in_house_ctf": {
|
609 |
-
"accuracy": null
|
610 |
-
},
|
611 |
-
"agentharm": {
|
612 |
-
"avg_score": null
|
613 |
-
},
|
614 |
-
"agentharm_benign": {
|
615 |
-
"avg_score": null
|
616 |
-
},
|
617 |
-
"swe_bench": {
|
618 |
-
"mean": null
|
619 |
-
}
|
620 |
-
}
|
621 |
-
},
|
622 |
-
"o1": {
|
623 |
-
"config": {
|
624 |
-
"model_name": "o1",
|
625 |
-
"model_sha": "https://openai.com/o1",
|
626 |
-
"model_dtype": "torch.float16"
|
627 |
-
},
|
628 |
-
"results": {
|
629 |
-
"winogrande": {
|
630 |
-
"accuracy": 0.9392265193370166
|
631 |
-
},
|
632 |
-
"humaneval": {
|
633 |
-
"mean": 0.9695121951219512
|
634 |
-
},
|
635 |
-
"mmmu_open": {
|
636 |
-
"accuracy": 0.6981132075471698
|
637 |
-
},
|
638 |
-
"math": {
|
639 |
-
"accuracy": 0.959
|
640 |
-
},
|
641 |
-
"arc_easy": {
|
642 |
-
"accuracy": 0.9911616161616161
|
643 |
-
},
|
644 |
-
"arc_challenge": {
|
645 |
-
"accuracy": 0.9786689419795221
|
646 |
-
},
|
647 |
-
"gsm8k": {
|
648 |
-
"accuracy": 0.9416224412433661
|
649 |
-
},
|
650 |
-
"gpqa_diamond": {
|
651 |
-
"accuracy": 0.7550505050505051
|
652 |
-
},
|
653 |
-
"mmlu_pro": {
|
654 |
-
"accuracy": 0.8447473404255319
|
655 |
-
},
|
656 |
-
"mmmu_multiple_choice": {
|
657 |
-
"accuracy": 0.8063754427390791
|
658 |
-
},
|
659 |
-
"drop": {
|
660 |
-
"mean": null
|
661 |
-
},
|
662 |
-
"hellaswag": {
|
663 |
-
"accuracy": null
|
664 |
-
},
|
665 |
-
"ifeval": {
|
666 |
-
"final_acc": null
|
667 |
-
},
|
668 |
-
"mmlu": {
|
669 |
-
"accuracy": null
|
670 |
-
},
|
671 |
-
"gaia": {
|
672 |
-
"accuracy": 0.41090909090909084
|
673 |
-
},
|
674 |
-
"gdm_intercode_ctf": {
|
675 |
-
"accuracy": 0.8481012658227849
|
676 |
-
},
|
677 |
-
"gdm_in_house_ctf": {
|
678 |
-
"accuracy": 0.46153846153846156
|
679 |
-
},
|
680 |
-
"agentharm": {
|
681 |
-
"avg_score": 0.08782061688311688
|
682 |
-
},
|
683 |
-
"agentharm_benign": {
|
684 |
-
"avg_score": 0.7235176849665487
|
685 |
-
},
|
686 |
-
"swe_bench": {
|
687 |
-
"mean": 0.0036
|
688 |
-
}
|
689 |
-
}
|
690 |
-
},
|
691 |
-
"o3-mini": {
|
692 |
-
"config": {
|
693 |
-
"model_name": "o3-mini",
|
694 |
-
"model_sha": "https://openai.com/index/openai-o3-mini",
|
695 |
-
"model_dtype": "torch.float16"
|
696 |
-
},
|
697 |
-
"results": {
|
698 |
-
"math": {
|
699 |
-
"accuracy": 0.9691320905993185
|
700 |
-
},
|
701 |
-
"humaneval": {
|
702 |
-
"mean": 0.9817073170731707
|
703 |
-
},
|
704 |
-
"mmlu_pro": {
|
705 |
-
"accuracy": 0.7924606807023383
|
706 |
-
},
|
707 |
-
"gpqa_diamond": {
|
708 |
-
"accuracy": 0.7365319865319865
|
709 |
-
},
|
710 |
-
"winogrande": {
|
711 |
-
"accuracy": 0.8492501973164956
|
712 |
-
},
|
713 |
-
"gsm8k": {
|
714 |
-
"accuracy": 0.9454131918119788
|
715 |
-
},
|
716 |
-
"arc_challenge": {
|
717 |
-
"accuracy": 0.9641638225255973
|
718 |
-
},
|
719 |
-
"arc_easy": {
|
720 |
-
"accuracy": 0.9755892255892256
|
721 |
-
},
|
722 |
-
"drop": {
|
723 |
-
"mean": null
|
724 |
-
},
|
725 |
-
"hellaswag": {
|
726 |
-
"accuracy": null
|
727 |
-
},
|
728 |
-
"ifeval": {
|
729 |
-
"final_acc": null
|
730 |
-
},
|
731 |
-
"mmlu": {
|
732 |
-
"accuracy": null
|
733 |
-
},
|
734 |
-
"mmmu_multiple_choice": {
|
735 |
-
"accuracy": null
|
736 |
-
},
|
737 |
-
"mmmu_open": {
|
738 |
-
"accuracy": null
|
739 |
-
},
|
740 |
-
"gaia": {
|
741 |
-
"accuracy": 0.27030303030303043
|
742 |
-
},
|
743 |
-
"gdm_intercode_ctf": {
|
744 |
-
"accuracy": 0.8278481012658225
|
745 |
-
},
|
746 |
-
"gdm_in_house_ctf": {
|
747 |
-
"accuracy": 0.38461538461538464
|
748 |
-
},
|
749 |
-
"agentharm": {
|
750 |
-
"avg_score": 0.1241931080283353
|
751 |
-
},
|
752 |
-
"agentharm_benign": {
|
753 |
-
"avg_score": 0.5429306867375049
|
754 |
-
},
|
755 |
-
"swe_bench": {
|
756 |
-
"mean": 0.0024
|
757 |
-
}
|
758 |
-
}
|
759 |
-
}
|
760 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
refactor_eval_results.py
DELETED
@@ -1,192 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
|
4 |
-
|
5 |
-
METRIC_NAME = {
|
6 |
-
# single-turn
|
7 |
-
"arc_easy": "accuracy",
|
8 |
-
"arc_challenge": "accuracy",
|
9 |
-
"gpqa_diamond": "accuracy",
|
10 |
-
"drop": "mean",
|
11 |
-
"winogrande": "accuracy",
|
12 |
-
"gsm8k": "accuracy",
|
13 |
-
"hellaswag": "accuracy",
|
14 |
-
"humaneval": "mean",
|
15 |
-
"ifeval": "final_acc",
|
16 |
-
"math": "accuracy",
|
17 |
-
"mmlu": "accuracy",
|
18 |
-
"mmlu_pro": "accuracy",
|
19 |
-
"mmmu_multiple_choice": "accuracy",
|
20 |
-
"mmmu_open": "accuracy",
|
21 |
-
|
22 |
-
# agentic
|
23 |
-
"gaia": "accuracy",
|
24 |
-
"gdm_intercode_ctf": "accuracy",
|
25 |
-
"gdm_in_house_ctf": "accuracy",
|
26 |
-
"agentharm": "avg_score",
|
27 |
-
"agentharm_benign": "avg_score",
|
28 |
-
"swe_bench": "mean",
|
29 |
-
}
|
30 |
-
|
31 |
-
MODEL_SHA_MAP = {
|
32 |
-
# open source models
|
33 |
-
"c4ai-command-r-plus": "https://huggingface.co/CohereForAI/c4ai-command-r-plus",
|
34 |
-
"Meta-Llama-3.1-70B-Instruct": "https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct",
|
35 |
-
"Mistral-Large-Instruct-2407": "https://huggingface.co/mistralai/Mistral-Large-Instruct-2407",
|
36 |
-
"Qwen2.5-72B-Instruct": "https://huggingface.co/Qwen/Qwen2.5-72B-Instruct",
|
37 |
-
|
38 |
-
# closed source models
|
39 |
-
"claude-3-5-sonnet-20241022": "https://www.anthropic.com/claude/sonnet",
|
40 |
-
"gemini-1.5-flash": "https://deepmind.google/technologies/gemini/flash", # TODO: points to 2.0, can't find page for 1.5
|
41 |
-
"gemini-1.5-pro": "https://deepmind.google/technologies/gemini/pro",
|
42 |
-
"gpt-4o": "https://openai.com/index/hello-gpt-4o",
|
43 |
-
"gpt-4o-mini": "https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence",
|
44 |
-
"o1": "https://openai.com/o1",
|
45 |
-
"o3-mini": "https://openai.com/index/openai-o3-mini",
|
46 |
-
"DeepSeek-R1": "https://api-docs.deepseek.com/news/news250120"
|
47 |
-
}
|
48 |
-
|
49 |
-
MODEL_VERSION_MAP = {
|
50 |
-
# open source models
|
51 |
-
"c4ai-command-r-plus": "c4ai-command-r-plus",
|
52 |
-
"Meta-Llama-3.1-70B-Instruct": "Llama-3.1-70B-Instruct",
|
53 |
-
"Mistral-Large-Instruct-2407": "Mistral-Large-Instruct-2407",
|
54 |
-
"Qwen2.5-72B-Instruct": "Qwen2.5-72B-Instruct",
|
55 |
-
|
56 |
-
# closed source models
|
57 |
-
"claude-3-5-sonnet-20241022": "Claude-3.5-Sonnet-20241022",
|
58 |
-
"gemini-1.5-flash": "Gemini-1.5-Flash",
|
59 |
-
"gemini-1.5-pro": "Gemini-1.5-Pro-002",
|
60 |
-
"gpt-4o": "GPT-4o-20240806",
|
61 |
-
"gpt-4o-mini": "GPT-4o-mini-20240718",
|
62 |
-
"o1": "o1-20241217",
|
63 |
-
"o3-mini": "o3-mini-20250131",
|
64 |
-
"DeepSeek-R1": "DeepSeek-R1",
|
65 |
-
}
|
66 |
-
|
67 |
-
AGENTIC_LOG_MODEL_NAME_MAP = {
|
68 |
-
"claude-3-5-sonnet-20241022": "claude-3-5-sonnet-20241022",
|
69 |
-
"gemini-1.5-pro": "gemini-1.5-pro-002",
|
70 |
-
"gpt-4o": "gpt-4o-2024-08-06",
|
71 |
-
"o1": "o1-2024-12-17",
|
72 |
-
"o3-mini": "o3-mini-2025-01-31",
|
73 |
-
}
|
74 |
-
|
75 |
-
AGENTIC_TASKS = ["gaia", "gdm-intercode-ctf", "gdm-in-house-ctf", "agentharm", "swe-bench"]
|
76 |
-
|
77 |
-
|
78 |
-
def combine_eval_results(results_path: str, model_name: str, type: str,) -> dict:
|
79 |
-
results = dict(
|
80 |
-
{
|
81 |
-
"config": {
|
82 |
-
"model_name": model_name,
|
83 |
-
# dummy keys
|
84 |
-
"model_sha": MODEL_SHA_MAP[model_name],
|
85 |
-
"model_dtype": "torch.float16",
|
86 |
-
},
|
87 |
-
"results": {},
|
88 |
-
}
|
89 |
-
)
|
90 |
-
|
91 |
-
if type == "base":
|
92 |
-
for file in os.listdir(os.path.join(results_path, model_name)):
|
93 |
-
if file.endswith(".json"):
|
94 |
-
with open(os.path.join(results_path, model_name, file), "r") as f:
|
95 |
-
try:
|
96 |
-
result = json.load(f)
|
97 |
-
task_name = result["eval"]["task"].split("/")[-1]
|
98 |
-
if task_name == "math":
|
99 |
-
metrics = [elm for elm in result["results"]["scores"] if elm["name"] == "expression_equivalance"][0]["metrics"] # TODO: change scorer if required
|
100 |
-
else:
|
101 |
-
metrics = result["results"]["scores"][0]["metrics"]
|
102 |
-
metric_name = metrics[METRIC_NAME[task_name]]["name"]
|
103 |
-
metric_value = metrics[METRIC_NAME[task_name]]["value"]
|
104 |
-
results["results"].update(
|
105 |
-
{
|
106 |
-
task_name: {
|
107 |
-
metric_name: metric_value
|
108 |
-
}
|
109 |
-
}
|
110 |
-
)
|
111 |
-
except KeyError as e:
|
112 |
-
print(f"KeyError: {e}")
|
113 |
-
print(model_name)
|
114 |
-
print(file)
|
115 |
-
|
116 |
-
elif type == "agentic":
|
117 |
-
model_name = AGENTIC_LOG_MODEL_NAME_MAP[model_name] # change name based on log file structure
|
118 |
-
results_path = os.path.join(results_path, model_name)
|
119 |
-
for task in AGENTIC_TASKS:
|
120 |
-
for file in os.listdir(os.path.join(results_path, task)):
|
121 |
-
if file.endswith(".json"):
|
122 |
-
with open(os.path.join(results_path, task, file), "r") as f:
|
123 |
-
try:
|
124 |
-
result = json.load(f)
|
125 |
-
task_name = result["eval"]["task"].split("/")[-1]
|
126 |
-
metrics = result["results"]["scores"][0]["metrics"]
|
127 |
-
metric_name = metrics[METRIC_NAME[task_name]]["name"].split("/")[-1]
|
128 |
-
metric_value = metrics[METRIC_NAME[task_name]]["value"]
|
129 |
-
results["results"].update(
|
130 |
-
{
|
131 |
-
task_name: {
|
132 |
-
metric_name: metric_value
|
133 |
-
}
|
134 |
-
}
|
135 |
-
)
|
136 |
-
except KeyError as e:
|
137 |
-
print(f"KeyError: {e}")
|
138 |
-
print(model_name)
|
139 |
-
print(file)
|
140 |
-
|
141 |
-
return results
|
142 |
-
|
143 |
-
|
144 |
-
def main():
|
145 |
-
|
146 |
-
CACHE_PATH=os.getenv("HF_HOME", ".")
|
147 |
-
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
148 |
-
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
149 |
-
|
150 |
-
base_bm_input_path = "./base_benchmarking_logs"
|
151 |
-
agentic_bm_input_path = "/fs01/projects/aieng/public/inspect_evals/agentic_benchmarking_runs"
|
152 |
-
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
|
153 |
-
os.makedirs(EVAL_REQUESTS_PATH, exist_ok=True)
|
154 |
-
|
155 |
-
for model_name in os.listdir(base_bm_input_path):
|
156 |
-
|
157 |
-
if os.path.isdir(os.path.join(base_bm_input_path, model_name)):
|
158 |
-
results = combine_eval_results(base_bm_input_path, model_name, "base")
|
159 |
-
# TMP: Add missing benchmarks to the results
|
160 |
-
for metric in METRIC_NAME.items():
|
161 |
-
if metric[0] not in results["results"]:
|
162 |
-
results["results"].update({metric[0]: {metric[1]: None}})
|
163 |
-
|
164 |
-
if os.path.isdir(os.path.join(agentic_bm_input_path, AGENTIC_LOG_MODEL_NAME_MAP.get(model_name, "NA"))):
|
165 |
-
agentic_bm_results = combine_eval_results(agentic_bm_input_path, model_name, "agentic")
|
166 |
-
results["results"].update(agentic_bm_results["results"])
|
167 |
-
with open(os.path.join(EVAL_RESULTS_PATH, f"{model_name}.json"), "w") as f:
|
168 |
-
json.dump(results, f, indent=4)
|
169 |
-
|
170 |
-
# Create dummy requests file
|
171 |
-
requests = {
|
172 |
-
"model": model_name,
|
173 |
-
"model_sha": MODEL_SHA_MAP[model_name],
|
174 |
-
"model_version": MODEL_VERSION_MAP[model_name],
|
175 |
-
"base_model": "",
|
176 |
-
"revision": "main",
|
177 |
-
"private": False,
|
178 |
-
"precision": "float16",
|
179 |
-
"weight_type": "Original",
|
180 |
-
"status": "FINISHED",
|
181 |
-
"submitted_time": "",
|
182 |
-
"model_type": "pretrained",
|
183 |
-
"likes": 0,
|
184 |
-
"params": 0,
|
185 |
-
"license": "custom",
|
186 |
-
}
|
187 |
-
with open(os.path.join(EVAL_REQUESTS_PATH, f"{model_name}.json"), "w") as f:
|
188 |
-
json.dump(requests, f, indent=4)
|
189 |
-
|
190 |
-
|
191 |
-
if __name__ == "__main__":
|
192 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/about.py
CHANGED
@@ -1,50 +1,9 @@
|
|
1 |
-
from dataclasses import dataclass
|
2 |
-
from enum import Enum
|
3 |
-
|
4 |
-
@dataclass
|
5 |
-
class Task:
|
6 |
-
benchmark: str
|
7 |
-
metric: str
|
8 |
-
col_name: str
|
9 |
-
type: str
|
10 |
-
source: str
|
11 |
-
|
12 |
-
|
13 |
-
# Select your tasks here
|
14 |
-
# ---------------------------------------------------
|
15 |
-
class Tasks(Enum):
|
16 |
-
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
17 |
-
|
18 |
-
# base
|
19 |
-
task0 = Task("arc_easy", "accuracy", "ARC-Easy", "base", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/arc")
|
20 |
-
task1 = Task("arc_challenge", "accuracy", "ARC-Challenge", "base", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/arc")
|
21 |
-
task2 = Task("drop", "mean", "DROP", "base", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/drop")
|
22 |
-
task3 = Task("winogrande", "accuracy", "WinoGrande", "base", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/winogrande")
|
23 |
-
task4 = Task("gsm8k", "accuracy", "GSM8K", "base", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/gsm8k")
|
24 |
-
task5 = Task("hellaswag", "accuracy", "HellaSwag", "base", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/hellaswag")
|
25 |
-
task6 = Task("humaneval", "mean", "HumanEval", "base", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/humaneval")
|
26 |
-
task7 = Task("ifeval", "final_acc", "IFEval", "base", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/ifeval")
|
27 |
-
task8 = Task("math", "accuracy", "MATH", "base", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/mathematics")
|
28 |
-
task9 = Task("mmlu", "accuracy", "MMLU", "base", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/mmlu")
|
29 |
-
task10 = Task("mmlu_pro", "accuracy", "MMLU-Pro", "base", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/mmlu_pro")
|
30 |
-
task11 = Task("gpqa_diamond", "accuracy", "GPQA-Diamond", "base", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/gpqa")
|
31 |
-
task12 = Task("mmmu_multiple_choice", "accuracy", "MMMU-Multiple-Choice", "base", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/mmmu")
|
32 |
-
task13 = Task("mmmu_open", "accuracy", "MMMU-Open-Ended", "base", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/mmmu")
|
33 |
-
|
34 |
-
# agentic
|
35 |
-
task14 = Task("gaia", "accuracy", "GAIA", "agentic", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/gaia")
|
36 |
-
task15 = Task("gdm_intercode_ctf", "accuracy", "InterCode-CTF", "agentic", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/gdm_capabilities/intercode_ctf")
|
37 |
-
task16 = Task("gdm_in_house_ctf", "accuracy", "In-House-CTF", "agentic", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/gdm_capabilities/in_house_ctf")
|
38 |
-
task17 = Task("agentharm", "avg_score", "AgentHarm", "agentic", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/agentharm")
|
39 |
-
task18 = Task("agentharm_benign", "avg_score", "AgentHarm-Benign", "agentic", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/agentharm")
|
40 |
-
task19 = Task("swe_bench", "mean", "SWE-Bench", "agentic", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/swe_bench")
|
41 |
-
|
42 |
|
43 |
# Your leaderboard name
|
44 |
TITLE = """<h1 align="center" id="space-title">State of Evaluation Leaderboard</h1>"""
|
45 |
|
46 |
-
SINGLE_TURN_TASK_NAMES = ", ".join([f"[{task.value.col_name}]({task.value.source})" for task in Tasks if task.value.type == "base"])
|
47 |
-
AGENTIC_TASK_NAMES = ", ".join([f"[{task.value.col_name}]({task.value.source})" for task in Tasks if task.value.type == "agentic"])
|
48 |
|
49 |
# What does your leaderboard evaluate?
|
50 |
INTRODUCTION_TEXT = f"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
# Your leaderboard name
|
3 |
TITLE = """<h1 align="center" id="space-title">State of Evaluation Leaderboard</h1>"""
|
4 |
|
5 |
+
# SINGLE_TURN_TASK_NAMES = ", ".join([f"[{task.value.col_name}]({task.value.source})" for task in Tasks if task.value.type == "base"])
|
6 |
+
# AGENTIC_TASK_NAMES = ", ".join([f"[{task.value.col_name}]({task.value.source})" for task in Tasks if task.value.type == "agentic"])
|
7 |
|
8 |
# What does your leaderboard evaluate?
|
9 |
INTRODUCTION_TEXT = f"""
|
src/display/utils.py
DELETED
@@ -1,102 +0,0 @@
|
|
1 |
-
from dataclasses import dataclass, make_dataclass
|
2 |
-
from enum import Enum
|
3 |
-
|
4 |
-
import pandas as pd
|
5 |
-
|
6 |
-
from src.about import Tasks
|
7 |
-
|
8 |
-
def fields(raw_class):
|
9 |
-
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
10 |
-
|
11 |
-
|
12 |
-
# These classes are for user facing column names,
|
13 |
-
# to avoid having to change them all around the code
|
14 |
-
# when a modif is needed
|
15 |
-
@dataclass
|
16 |
-
class ColumnContent:
|
17 |
-
name: str
|
18 |
-
type: str
|
19 |
-
displayed_by_default: bool
|
20 |
-
hidden: bool = False
|
21 |
-
never_hidden: bool = False
|
22 |
-
|
23 |
-
def __hash__(self):
|
24 |
-
return f"{self.name}-{self.type}-{self.displayed_by_default}-{self.hidden}-{self.never_hidden}"
|
25 |
-
|
26 |
-
## Leaderboard columns
|
27 |
-
auto_eval_column_dict = []
|
28 |
-
# Init
|
29 |
-
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
30 |
-
auto_eval_column_dict.append(["agent", ColumnContent, ColumnContent("Agent", "markdown", True, never_hidden=True)])
|
31 |
-
# Scores
|
32 |
-
for task in Tasks:
|
33 |
-
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "markdown", True)])
|
34 |
-
|
35 |
-
# We use make dataclass to dynamically fill the scores from Tasks
|
36 |
-
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
37 |
-
|
38 |
-
## For the queue columns in the submission tab
|
39 |
-
@dataclass(frozen=True)
|
40 |
-
class EvalQueueColumn: # Queue column
|
41 |
-
model = ColumnContent("model", "markdown", True)
|
42 |
-
revision = ColumnContent("revision", "str", True)
|
43 |
-
private = ColumnContent("private", "bool", True)
|
44 |
-
precision = ColumnContent("precision", "str", True)
|
45 |
-
weight_type = ColumnContent("weight_type", "str", "Original")
|
46 |
-
status = ColumnContent("status", "str", True)
|
47 |
-
|
48 |
-
## All the model information that we might need
|
49 |
-
@dataclass
|
50 |
-
class ModelDetails:
|
51 |
-
name: str
|
52 |
-
display_name: str = ""
|
53 |
-
symbol: str = "" # emoji
|
54 |
-
|
55 |
-
|
56 |
-
class ModelType(Enum):
|
57 |
-
PT = ModelDetails(name="pretrained", symbol="🟢")
|
58 |
-
FT = ModelDetails(name="fine-tuned", symbol="🔶")
|
59 |
-
IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
|
60 |
-
RL = ModelDetails(name="RL-tuned", symbol="🟦")
|
61 |
-
Unknown = ModelDetails(name="", symbol="?")
|
62 |
-
|
63 |
-
def to_str(self, separator=" "):
|
64 |
-
return f"{self.value.symbol}{separator}{self.value.name}"
|
65 |
-
|
66 |
-
@staticmethod
|
67 |
-
def from_str(type):
|
68 |
-
if "fine-tuned" in type or "🔶" in type:
|
69 |
-
return ModelType.FT
|
70 |
-
if "pretrained" in type or "🟢" in type:
|
71 |
-
return ModelType.PT
|
72 |
-
if "RL-tuned" in type or "🟦" in type:
|
73 |
-
return ModelType.RL
|
74 |
-
if "instruction-tuned" in type or "⭕" in type:
|
75 |
-
return ModelType.IFT
|
76 |
-
return ModelType.Unknown
|
77 |
-
|
78 |
-
class WeightType(Enum):
|
79 |
-
Adapter = ModelDetails("Adapter")
|
80 |
-
Original = ModelDetails("Original")
|
81 |
-
Delta = ModelDetails("Delta")
|
82 |
-
|
83 |
-
class Precision(Enum):
|
84 |
-
float16 = ModelDetails("float16")
|
85 |
-
bfloat16 = ModelDetails("bfloat16")
|
86 |
-
Unknown = ModelDetails("?")
|
87 |
-
|
88 |
-
def from_str(precision):
|
89 |
-
if precision in ["torch.float16", "float16"]:
|
90 |
-
return Precision.float16
|
91 |
-
if precision in ["torch.bfloat16", "bfloat16"]:
|
92 |
-
return Precision.bfloat16
|
93 |
-
return Precision.Unknown
|
94 |
-
|
95 |
-
# Column selection
|
96 |
-
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
97 |
-
|
98 |
-
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
99 |
-
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
100 |
-
|
101 |
-
ST_BENCHMARK_COLS = [t.value.col_name for t in Tasks if t.value.type=="base"]
|
102 |
-
AGENTIC_BENCHMARK_COLS = [t.value.col_name for t in Tasks if t.value.type=="agentic"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/envs.py
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
from huggingface_hub import HfApi
|
4 |
-
|
5 |
-
# Info to change for your repository
|
6 |
-
# ----------------------------------
|
7 |
-
TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
|
8 |
-
|
9 |
-
OWNER = "vector-institute" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
10 |
-
# ----------------------------------
|
11 |
-
|
12 |
-
REPO_ID = f"{OWNER}/llm-eval-leaderboard"
|
13 |
-
QUEUE_REPO = f"{OWNER}/llm-eval-requests"
|
14 |
-
RESULTS_REPO = f"{OWNER}/llm-eval-results"
|
15 |
-
|
16 |
-
# If you setup a cache later, just change HF_HOME
|
17 |
-
CACHE_PATH=os.getenv("HF_HOME", ".")
|
18 |
-
|
19 |
-
# Local caches
|
20 |
-
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
21 |
-
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
22 |
-
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
23 |
-
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
24 |
-
|
25 |
-
API = HfApi(token=TOKEN)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/leaderboard/read_evals.py
DELETED
@@ -1,192 +0,0 @@
|
|
1 |
-
import glob
|
2 |
-
import json
|
3 |
-
import math
|
4 |
-
import os
|
5 |
-
from dataclasses import dataclass
|
6 |
-
|
7 |
-
import dateutil
|
8 |
-
import numpy as np
|
9 |
-
|
10 |
-
from src.display.formatting import make_clickable_model
|
11 |
-
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
|
12 |
-
from src.submission.check_validity import is_model_on_hub
|
13 |
-
|
14 |
-
|
15 |
-
@dataclass
|
16 |
-
class EvalResult:
|
17 |
-
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
18 |
-
"""
|
19 |
-
eval_name: str # org_model_precision (uid)
|
20 |
-
full_model: str # org/model (path on hub)
|
21 |
-
org: str
|
22 |
-
model: str
|
23 |
-
revision: str # commit hash, "" if main
|
24 |
-
results: dict
|
25 |
-
model_version: str = ""
|
26 |
-
precision: Precision = Precision.Unknown
|
27 |
-
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
28 |
-
weight_type: WeightType = WeightType.Original # Original or Adapter
|
29 |
-
architecture: str = "Unknown"
|
30 |
-
license: str = "?"
|
31 |
-
likes: int = 0
|
32 |
-
num_params: int = 0
|
33 |
-
date: str = "" # submission date of request file
|
34 |
-
still_on_hub: bool = False
|
35 |
-
|
36 |
-
@classmethod
|
37 |
-
def init_from_json_file(self, json_filepath):
|
38 |
-
"""Inits the result from the specific model result file"""
|
39 |
-
with open(json_filepath) as fp:
|
40 |
-
data = json.load(fp)
|
41 |
-
|
42 |
-
config = data.get("config")
|
43 |
-
|
44 |
-
# Precision
|
45 |
-
precision = Precision.from_str(config.get("model_dtype"))
|
46 |
-
|
47 |
-
# Get model and org
|
48 |
-
org_and_model = config.get("model_name", config.get("model_args", None))
|
49 |
-
org_and_model = org_and_model.split("/", 1)
|
50 |
-
|
51 |
-
if len(org_and_model) == 1:
|
52 |
-
org = None
|
53 |
-
model = org_and_model[0]
|
54 |
-
result_key = f"{model}"
|
55 |
-
else:
|
56 |
-
org = org_and_model[0]
|
57 |
-
model = org_and_model[1]
|
58 |
-
result_key = f"{org}_{model}"
|
59 |
-
full_model = "/".join(org_and_model)
|
60 |
-
|
61 |
-
still_on_hub, _, model_config = is_model_on_hub(
|
62 |
-
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
|
63 |
-
)
|
64 |
-
architecture = "?"
|
65 |
-
if model_config is not None:
|
66 |
-
architectures = getattr(model_config, "architectures", None)
|
67 |
-
if architectures:
|
68 |
-
architecture = ";".join(architectures)
|
69 |
-
|
70 |
-
# Extract results available in this file (some results are split in several files)
|
71 |
-
results = {}
|
72 |
-
for task in Tasks:
|
73 |
-
task = task.value
|
74 |
-
|
75 |
-
# We average all scores of a given metric (not all metrics are present in all files)
|
76 |
-
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
|
77 |
-
# if accs.size == 0 or any([acc is None for acc in accs]):
|
78 |
-
# continue
|
79 |
-
if accs.size == 0:
|
80 |
-
continue
|
81 |
-
elif any([acc is None for acc in accs]):
|
82 |
-
mean_acc = None
|
83 |
-
else:
|
84 |
-
mean_acc = np.mean(accs) * 100.0
|
85 |
-
results[task.benchmark] = mean_acc
|
86 |
-
|
87 |
-
return self(
|
88 |
-
eval_name=result_key,
|
89 |
-
full_model=full_model,
|
90 |
-
org=org,
|
91 |
-
model=model,
|
92 |
-
results=results,
|
93 |
-
precision=precision,
|
94 |
-
revision= config.get("model_sha", ""),
|
95 |
-
still_on_hub=still_on_hub,
|
96 |
-
architecture=architecture
|
97 |
-
)
|
98 |
-
|
99 |
-
def update_with_request_file(self, requests_path):
|
100 |
-
"""Finds the relevant request file for the current model and updates info with it"""
|
101 |
-
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
|
102 |
-
|
103 |
-
try:
|
104 |
-
with open(request_file, "r") as f:
|
105 |
-
request = json.load(f)
|
106 |
-
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
107 |
-
self.model_version = request.get("model_version", "")
|
108 |
-
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
109 |
-
self.license = request.get("license", "?")
|
110 |
-
self.likes = request.get("likes", 0)
|
111 |
-
self.num_params = request.get("params", 0)
|
112 |
-
self.date = request.get("submitted_time", "")
|
113 |
-
except Exception:
|
114 |
-
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
|
115 |
-
|
116 |
-
def to_dict(self):
|
117 |
-
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
118 |
-
data_dict = {
|
119 |
-
"eval_name": self.eval_name, # not a column, just a save name,
|
120 |
-
AutoEvalColumn.model.name: make_clickable_model(self.model_version, self.revision),
|
121 |
-
# As of now all models use the basic inspect agent
|
122 |
-
AutoEvalColumn.agent.name: "[Basic Agent](https://inspect.ai-safety-institute.org.uk/agents.html#sec-basic-agent)"
|
123 |
-
}
|
124 |
-
|
125 |
-
for task in Tasks:
|
126 |
-
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
127 |
-
|
128 |
-
return data_dict
|
129 |
-
|
130 |
-
|
131 |
-
def get_request_file_for_model(requests_path, model_name, precision):
|
132 |
-
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
133 |
-
request_files = os.path.join(
|
134 |
-
requests_path,
|
135 |
-
f"{model_name}.json",
|
136 |
-
)
|
137 |
-
request_files = glob.glob(request_files)
|
138 |
-
|
139 |
-
# Select correct request file (precision)
|
140 |
-
request_file = ""
|
141 |
-
request_files = sorted(request_files, reverse=True)
|
142 |
-
for tmp_request_file in request_files:
|
143 |
-
with open(tmp_request_file, "r") as f:
|
144 |
-
req_content = json.load(f)
|
145 |
-
if (
|
146 |
-
req_content["status"] in ["FINISHED"]
|
147 |
-
and req_content["precision"] == precision.split(".")[-1]
|
148 |
-
):
|
149 |
-
request_file = tmp_request_file
|
150 |
-
return request_file
|
151 |
-
|
152 |
-
|
153 |
-
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
|
154 |
-
"""From the path of the results folder root, extract all needed info for results"""
|
155 |
-
model_result_filepaths = []
|
156 |
-
|
157 |
-
for root, _, files in os.walk(results_path):
|
158 |
-
# We should only have json files in model results
|
159 |
-
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
160 |
-
continue
|
161 |
-
|
162 |
-
# Sort the files by date
|
163 |
-
try:
|
164 |
-
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
165 |
-
except dateutil.parser._parser.ParserError:
|
166 |
-
files = [files[-1]]
|
167 |
-
|
168 |
-
for file in files:
|
169 |
-
model_result_filepaths.append(os.path.join(root, file))
|
170 |
-
|
171 |
-
eval_results = {}
|
172 |
-
for model_result_filepath in model_result_filepaths:
|
173 |
-
# Creation of result
|
174 |
-
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
175 |
-
eval_result.update_with_request_file(requests_path)
|
176 |
-
|
177 |
-
# Store results of same eval together
|
178 |
-
eval_name = eval_result.eval_name
|
179 |
-
if eval_name in eval_results.keys():
|
180 |
-
eval_results[eval_name].results.update(eval_result.results)
|
181 |
-
else:
|
182 |
-
eval_results[eval_name] = eval_result
|
183 |
-
|
184 |
-
results = []
|
185 |
-
for v in eval_results.values():
|
186 |
-
try:
|
187 |
-
v.to_dict() # we test if the dict version is complete
|
188 |
-
results.append(v)
|
189 |
-
except KeyError: # not all eval values present
|
190 |
-
continue
|
191 |
-
|
192 |
-
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/populate.py
DELETED
@@ -1,98 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
|
4 |
-
import numpy as np
|
5 |
-
import pandas as pd
|
6 |
-
|
7 |
-
from src.about import Tasks
|
8 |
-
from src.display.formatting import has_no_nan_values, make_clickable_model
|
9 |
-
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
10 |
-
from src.leaderboard.read_evals import get_raw_eval_results
|
11 |
-
|
12 |
-
from refactor_eval_results import MODEL_VERSION_MAP
|
13 |
-
|
14 |
-
|
15 |
-
TASK_NAME_INVERSE_MAP = dict()
|
16 |
-
for task in Tasks:
|
17 |
-
TASK_NAME_INVERSE_MAP[task.value.col_name] = {
|
18 |
-
"name": task.value.benchmark,
|
19 |
-
"type": task.value.type,
|
20 |
-
"source": task.value.source,
|
21 |
-
}
|
22 |
-
|
23 |
-
EMPTY_SYMBOL = "--"
|
24 |
-
|
25 |
-
|
26 |
-
def get_inspect_log_url(model_name: str, benchmark_name: str) -> str:
|
27 |
-
"""Returns the URL to the log file for a given model and benchmark"""
|
28 |
-
with open("./inspect_log_file_names.json", "r") as f:
|
29 |
-
inspect_log_files = json.load(f)
|
30 |
-
log_file_name = inspect_log_files[model_name].get(benchmark_name, None)
|
31 |
-
if log_file_name is None:
|
32 |
-
return ""
|
33 |
-
else:
|
34 |
-
# replace .json with .eval
|
35 |
-
log_file_name = log_file_name.replace(".json", ".eval")
|
36 |
-
return f"https://storage.googleapis.com/inspect-evals/eval/{model_name}/index.html?log_file=logs/logs/{log_file_name}"
|
37 |
-
|
38 |
-
|
39 |
-
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
40 |
-
"""Creates a dataframe from all the individual experiment results"""
|
41 |
-
raw_data = get_raw_eval_results(results_path, requests_path)
|
42 |
-
all_data_json = [v.to_dict() for v in raw_data]
|
43 |
-
|
44 |
-
df = pd.DataFrame.from_records(all_data_json)
|
45 |
-
|
46 |
-
df = df[cols].round(decimals=2)
|
47 |
-
|
48 |
-
# subset for model and benchmark cols
|
49 |
-
df = df[[AutoEvalColumn.model.name, AutoEvalColumn.agent.name] + benchmark_cols]
|
50 |
-
|
51 |
-
# drop rows for which all benchmark cols are empty
|
52 |
-
df = df.dropna(subset=benchmark_cols, axis=0, how="all")
|
53 |
-
|
54 |
-
df = df.fillna(EMPTY_SYMBOL)
|
55 |
-
|
56 |
-
inverse_model_version_map = {v: k for k, v in MODEL_VERSION_MAP.items()}
|
57 |
-
|
58 |
-
# make values clickable and link to log files
|
59 |
-
for col in benchmark_cols:
|
60 |
-
df[col] = df[[AutoEvalColumn.model.name, col]].apply(lambda x: f"[{x[col]}]({get_inspect_log_url(model_name=inverse_model_version_map[x[AutoEvalColumn.model.name].split('>')[1].split('<')[0]], benchmark_name=TASK_NAME_INVERSE_MAP[col]['name'])})" if x[col] != EMPTY_SYMBOL else x[col], axis=1)
|
61 |
-
|
62 |
-
return df
|
63 |
-
|
64 |
-
|
65 |
-
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
66 |
-
"""Creates the different dataframes for the evaluation queues requestes"""
|
67 |
-
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
68 |
-
all_evals = []
|
69 |
-
|
70 |
-
for entry in entries:
|
71 |
-
if ".json" in entry:
|
72 |
-
file_path = os.path.join(save_path, entry)
|
73 |
-
with open(file_path) as fp:
|
74 |
-
data = json.load(fp)
|
75 |
-
|
76 |
-
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"], data["model_sha"])
|
77 |
-
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
78 |
-
|
79 |
-
all_evals.append(data)
|
80 |
-
elif ".md" not in entry:
|
81 |
-
# this is a folder
|
82 |
-
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
|
83 |
-
for sub_entry in sub_entries:
|
84 |
-
file_path = os.path.join(save_path, entry, sub_entry)
|
85 |
-
with open(file_path) as fp:
|
86 |
-
data = json.load(fp)
|
87 |
-
|
88 |
-
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"], data["model_sha"])
|
89 |
-
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
90 |
-
all_evals.append(data)
|
91 |
-
|
92 |
-
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
93 |
-
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
94 |
-
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
|
95 |
-
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
96 |
-
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
97 |
-
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
98 |
-
return df_finished[cols], df_running[cols], df_pending[cols]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/submission/check_validity.py
DELETED
@@ -1,99 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
import re
|
4 |
-
from collections import defaultdict
|
5 |
-
from datetime import datetime, timedelta, timezone
|
6 |
-
|
7 |
-
import huggingface_hub
|
8 |
-
from huggingface_hub import ModelCard
|
9 |
-
from huggingface_hub.hf_api import ModelInfo
|
10 |
-
from transformers import AutoConfig
|
11 |
-
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
12 |
-
|
13 |
-
def check_model_card(repo_id: str) -> tuple[bool, str]:
|
14 |
-
"""Checks if the model card and license exist and have been filled"""
|
15 |
-
try:
|
16 |
-
card = ModelCard.load(repo_id)
|
17 |
-
except huggingface_hub.utils.EntryNotFoundError:
|
18 |
-
return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
|
19 |
-
|
20 |
-
# Enforce license metadata
|
21 |
-
if card.data.license is None:
|
22 |
-
if not ("license_name" in card.data and "license_link" in card.data):
|
23 |
-
return False, (
|
24 |
-
"License not found. Please add a license to your model card using the `license` metadata or a"
|
25 |
-
" `license_name`/`license_link` pair."
|
26 |
-
)
|
27 |
-
|
28 |
-
# Enforce card content
|
29 |
-
if len(card.text) < 200:
|
30 |
-
return False, "Please add a description to your model card, it is too short."
|
31 |
-
|
32 |
-
return True, ""
|
33 |
-
|
34 |
-
def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
|
35 |
-
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
|
36 |
-
try:
|
37 |
-
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
38 |
-
if test_tokenizer:
|
39 |
-
try:
|
40 |
-
tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
41 |
-
except ValueError as e:
|
42 |
-
return (
|
43 |
-
False,
|
44 |
-
f"uses a tokenizer which is not in a transformers release: {e}",
|
45 |
-
None
|
46 |
-
)
|
47 |
-
except Exception as e:
|
48 |
-
return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
|
49 |
-
return True, None, config
|
50 |
-
|
51 |
-
except ValueError:
|
52 |
-
return (
|
53 |
-
False,
|
54 |
-
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
55 |
-
None
|
56 |
-
)
|
57 |
-
|
58 |
-
except Exception as e:
|
59 |
-
return False, "was not found on hub!", None
|
60 |
-
|
61 |
-
|
62 |
-
def get_model_size(model_info: ModelInfo, precision: str):
|
63 |
-
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
|
64 |
-
try:
|
65 |
-
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
66 |
-
except (AttributeError, TypeError):
|
67 |
-
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
|
68 |
-
|
69 |
-
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
|
70 |
-
model_size = size_factor * model_size
|
71 |
-
return model_size
|
72 |
-
|
73 |
-
def get_model_arch(model_info: ModelInfo):
|
74 |
-
"""Gets the model architecture from the configuration"""
|
75 |
-
return model_info.config.get("architectures", "Unknown")
|
76 |
-
|
77 |
-
def already_submitted_models(requested_models_dir: str) -> set[str]:
|
78 |
-
"""Gather a list of already submitted models to avoid duplicates"""
|
79 |
-
depth = 1
|
80 |
-
file_names = []
|
81 |
-
users_to_submission_dates = defaultdict(list)
|
82 |
-
|
83 |
-
for root, _, files in os.walk(requested_models_dir):
|
84 |
-
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
|
85 |
-
if current_depth == depth:
|
86 |
-
for file in files:
|
87 |
-
if not file.endswith(".json"):
|
88 |
-
continue
|
89 |
-
with open(os.path.join(root, file), "r") as f:
|
90 |
-
info = json.load(f)
|
91 |
-
file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
|
92 |
-
|
93 |
-
# Select organisation
|
94 |
-
if info["model"].count("/") == 0 or "submitted_time" not in info:
|
95 |
-
continue
|
96 |
-
organisation, _ = info["model"].split("/")
|
97 |
-
users_to_submission_dates[organisation].append(info["submitted_time"])
|
98 |
-
|
99 |
-
return set(file_names), users_to_submission_dates
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/submission/submit.py
DELETED
@@ -1,119 +0,0 @@
|
|
1 |
-
# import json
|
2 |
-
# import os
|
3 |
-
# from datetime import datetime, timezone
|
4 |
-
|
5 |
-
# from src.display.formatting import styled_error, styled_message, styled_warning
|
6 |
-
# from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
|
7 |
-
# from src.submission.check_validity import (
|
8 |
-
# already_submitted_models,
|
9 |
-
# check_model_card,
|
10 |
-
# get_model_size,
|
11 |
-
# is_model_on_hub,
|
12 |
-
# )
|
13 |
-
|
14 |
-
# REQUESTED_MODELS = None
|
15 |
-
# USERS_TO_SUBMISSION_DATES = None
|
16 |
-
|
17 |
-
# def add_new_eval(
|
18 |
-
# model: str,
|
19 |
-
# base_model: str,
|
20 |
-
# revision: str,
|
21 |
-
# precision: str,
|
22 |
-
# weight_type: str,
|
23 |
-
# model_type: str,
|
24 |
-
# ):
|
25 |
-
# global REQUESTED_MODELS
|
26 |
-
# global USERS_TO_SUBMISSION_DATES
|
27 |
-
# if not REQUESTED_MODELS:
|
28 |
-
# REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
29 |
-
|
30 |
-
# user_name = ""
|
31 |
-
# model_path = model
|
32 |
-
# if "/" in model:
|
33 |
-
# user_name = model.split("/")[0]
|
34 |
-
# model_path = model.split("/")[1]
|
35 |
-
|
36 |
-
# precision = precision.split(" ")[0]
|
37 |
-
# current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
38 |
-
|
39 |
-
# if model_type is None or model_type == "":
|
40 |
-
# return styled_error("Please select a model type.")
|
41 |
-
|
42 |
-
# # Does the model actually exist?
|
43 |
-
# if revision == "":
|
44 |
-
# revision = "main"
|
45 |
-
|
46 |
-
# # Is the model on the hub?
|
47 |
-
# if weight_type in ["Delta", "Adapter"]:
|
48 |
-
# base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
|
49 |
-
# if not base_model_on_hub:
|
50 |
-
# return styled_error(f'Base model "{base_model}" {error}')
|
51 |
-
|
52 |
-
# if not weight_type == "Adapter":
|
53 |
-
# model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
|
54 |
-
# if not model_on_hub:
|
55 |
-
# return styled_error(f'Model "{model}" {error}')
|
56 |
-
|
57 |
-
# # Is the model info correctly filled?
|
58 |
-
# try:
|
59 |
-
# model_info = API.model_info(repo_id=model, revision=revision)
|
60 |
-
# except Exception:
|
61 |
-
# return styled_error("Could not get your model information. Please fill it up properly.")
|
62 |
-
|
63 |
-
# model_size = get_model_size(model_info=model_info, precision=precision)
|
64 |
-
|
65 |
-
# # Were the model card and license filled?
|
66 |
-
# try:
|
67 |
-
# license = model_info.cardData["license"]
|
68 |
-
# except Exception:
|
69 |
-
# return styled_error("Please select a license for your model")
|
70 |
-
|
71 |
-
# modelcard_OK, error_msg = check_model_card(model)
|
72 |
-
# if not modelcard_OK:
|
73 |
-
# return styled_error(error_msg)
|
74 |
-
|
75 |
-
# # Seems good, creating the eval
|
76 |
-
# print("Adding new eval")
|
77 |
-
|
78 |
-
# eval_entry = {
|
79 |
-
# "model": model,
|
80 |
-
# "base_model": base_model,
|
81 |
-
# "revision": revision,
|
82 |
-
# "precision": precision,
|
83 |
-
# "weight_type": weight_type,
|
84 |
-
# "status": "PENDING",
|
85 |
-
# "submitted_time": current_time,
|
86 |
-
# "model_type": model_type,
|
87 |
-
# "likes": model_info.likes,
|
88 |
-
# "params": model_size,
|
89 |
-
# "license": license,
|
90 |
-
# "private": False,
|
91 |
-
# }
|
92 |
-
|
93 |
-
# # Check for duplicate submission
|
94 |
-
# if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
|
95 |
-
# return styled_warning("This model has been already submitted.")
|
96 |
-
|
97 |
-
# print("Creating eval file")
|
98 |
-
# OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
99 |
-
# os.makedirs(OUT_DIR, exist_ok=True)
|
100 |
-
# out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
|
101 |
-
|
102 |
-
# with open(out_path, "w") as f:
|
103 |
-
# f.write(json.dumps(eval_entry))
|
104 |
-
|
105 |
-
# print("Uploading eval file")
|
106 |
-
# API.upload_file(
|
107 |
-
# path_or_fileobj=out_path,
|
108 |
-
# path_in_repo=out_path.split("eval-queue/")[1],
|
109 |
-
# repo_id=QUEUE_REPO,
|
110 |
-
# repo_type="dataset",
|
111 |
-
# commit_message=f"Add {model} to eval queue",
|
112 |
-
# )
|
113 |
-
|
114 |
-
# # Remove the local file
|
115 |
-
# os.remove(out_path)
|
116 |
-
|
117 |
-
# return styled_message(
|
118 |
-
# "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
|
119 |
-
# )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|