import json import os import pandas as pd from src.about import Tasks from src.display.formatting import has_no_nan_values, make_clickable_model from src.display.utils import AutoEvalColumn, EvalQueueColumn from src.leaderboard.read_evals import get_raw_eval_results TASK_NAME_INVERSE_MAP = dict() for task in Tasks: TASK_NAME_INVERSE_MAP[task.value.col_name] = { "name": task.value.benchmark, "type": task.value.type, "source": task.value.source, } def get_inspect_log_url(model_name: str, benchmark_name: str) -> str: """Returns the URL to the log file for a given model and benchmark""" with open("./inspect_log_file_names.json", "r") as f: inspect_log_files = json.load(f) log_file_name = inspect_log_files[model_name].get(benchmark_name, None) if log_file_name is None: return "" else: return f"https://storage.googleapis.com/inspect-evals/{model_name}/index.html?log_file=logs/logs/{log_file_name}" def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: """Creates a dataframe from all the individual experiment results""" raw_data = get_raw_eval_results(results_path, requests_path) all_data_json = [v.to_dict() for v in raw_data] df = pd.DataFrame.from_records(all_data_json) df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) df = df[cols].round(decimals=2) # filter out if any of the benchmarks have not been produced df = df[has_no_nan_values(df, benchmark_cols)] # make values clickable and link to log files for col in benchmark_cols: df[col] = df[[AutoEvalColumn.model.name, col]].apply(lambda x: f"[{x[col]}]({get_inspect_log_url(model_name=x[AutoEvalColumn.model.name].split('>')[1].split('<')[0], benchmark_name=TASK_NAME_INVERSE_MAP[col]['name'])})", axis=1) # # make task names clickable and link to inspect-evals repository - this creates issues later # df = df.rename(columns={col: f"[{col}]({TASK_NAME_INVERSE_MAP[col]['source']})" for col in benchmark_cols}) return df def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: """Creates the different dataframes for the evaluation queues requestes""" entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] all_evals = [] for entry in entries: if ".json" in entry: file_path = os.path.join(save_path, entry) with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) elif ".md" not in entry: # this is a folder sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")] for sub_entry in sub_entries: file_path = os.path.join(save_path, entry, sub_entry) with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] running_list = [e for e in all_evals if e["status"] == "RUNNING"] finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] df_pending = pd.DataFrame.from_records(pending_list, columns=cols) df_running = pd.DataFrame.from_records(running_list, columns=cols) df_finished = pd.DataFrame.from_records(finished_list, columns=cols) return df_finished[cols], df_running[cols], df_pending[cols]