vedsadani commited on
Commit
e6797ae
·
verified ·
1 Parent(s): a8841b9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -27
app.py CHANGED
@@ -18,7 +18,7 @@ import re
18
 
19
 
20
  embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
21
- vector_store= FAISS.load_local("vector_db/", embeddings)
22
 
23
  repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1"
24
  llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature": 0.01, "max_new_tokens": 4096})
@@ -29,9 +29,7 @@ retriever = vector_store.as_retriever(
29
  )
30
 
31
  df=pd.read_csv('data/Gretel_Data.csv')
32
- averages = df.mean().to_dict()
33
-
34
- # agent = Agent([df], config={"llm": llm, 'verbose':True})
35
 
36
  global unique_columns
37
  unique_columns = [
@@ -132,11 +130,11 @@ network_features = {
132
  ]
133
  }
134
 
135
- def echo(message, history):
136
  try:
137
  qa=RetrievalQA.from_chain_type(llm=llm, retriever=retriever, return_source_documents=True)
138
- message= " <s> [INST] You are a senior telecom network engineer having access to troubleshooting tickets data and other technical and product documentation. Stick to the knowledge provided. Search through the product documentation pdfs first before scanning the tickets to generate the answer. Return only the helpful answer. Question:" + message + '[/INST]'
139
- result= qa({"query":message})
140
  answer= result['result'].split('Helpful Answer:')[-1]
141
  for word in target_words:
142
  if re.search(r'\b' + re.escape(word) + r'\b', answer, flags=re.IGNORECASE):
@@ -176,17 +174,6 @@ def echo(message, history):
176
  error_message = f"An error occurred: {e}"+str(e.with_traceback) + str(e.args)
177
  return error_message, error_message
178
 
179
- # def echo_agent(message, history):
180
- # message="There are 2 df's. If you find a KeyError check for the same in the other df." + "<br>" + message
181
- # try:
182
- # with io.StringIO() as buffer:
183
- # with contextlib.redirect_stdout(buffer):
184
- # result= agent.chat(message)
185
- # return result
186
- # except Exception as e:
187
- # error_message = f"An error occurred: {e}"+str(e.with_traceback) + str(e.args)
188
- # return error_message
189
-
190
  demo_agent = gr.Blocks(
191
  title="Network Ticket Knowledge Management",
192
  theme=gr.themes.Soft(),
@@ -229,14 +216,5 @@ with demo_agent:
229
  inputs=[message]
230
  )
231
 
232
- # with gr.Tab('Sam'):
233
- # with gr.Row():
234
- # message_agent = gr.Text(label="Input Query")
235
- # with gr.Row():
236
- # reply_agent = gr.Text(label="Answer")
237
-
238
- # btn2 = gr.Button("Submit")
239
- # btn2.click(echo_agent, inputs=[message_agent], outputs=[reply_agent])
240
-
241
 
242
  demo_agent.launch(share=True,debug=True,auth=("admin", "Sam&Clara"))
 
18
 
19
 
20
  embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
21
+ vector_store= FAISS.load_local("vector_db/", embeddings, , allow_dangerous_deserialization=True)
22
 
23
  repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1"
24
  llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature": 0.01, "max_new_tokens": 4096})
 
29
  )
30
 
31
  df=pd.read_csv('data/Gretel_Data.csv')
32
+ averages = df.mean(numeric_only=True).to_dict()
 
 
33
 
34
  global unique_columns
35
  unique_columns = [
 
130
  ]
131
  }
132
 
133
+ def echo(query, history):
134
  try:
135
  qa=RetrievalQA.from_chain_type(llm=llm, retriever=retriever, return_source_documents=True)
136
+ query= " <s> [INST] You are a senior telecom network engineer having access to troubleshooting tickets data and other technical and product documentation. Stick to the knowledge provided. Search through the product documentation pdfs first before scanning the tickets to generate the answer. Return only the helpful answer. Question:" + query + '[/INST]'
137
+ result= qa({"query":query})
138
  answer= result['result'].split('Helpful Answer:')[-1]
139
  for word in target_words:
140
  if re.search(r'\b' + re.escape(word) + r'\b', answer, flags=re.IGNORECASE):
 
174
  error_message = f"An error occurred: {e}"+str(e.with_traceback) + str(e.args)
175
  return error_message, error_message
176
 
 
 
 
 
 
 
 
 
 
 
 
177
  demo_agent = gr.Blocks(
178
  title="Network Ticket Knowledge Management",
179
  theme=gr.themes.Soft(),
 
216
  inputs=[message]
217
  )
218
 
 
 
 
 
 
 
 
 
 
219
 
220
  demo_agent.launch(share=True,debug=True,auth=("admin", "Sam&Clara"))