veechan commited on
Commit
c7f77c1
·
1 Parent(s): 04e1b92

fixed imports

Browse files
Files changed (2) hide show
  1. app.py +66 -59
  2. requirements.txt +8 -1
app.py CHANGED
@@ -1,63 +1,70 @@
 
 
 
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
+ import os
2
+ import torch
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
4
+ from langchain_community.embeddings import HuggingFaceEmbeddings
5
+ from langchain_huggingface import HuggingFacePipeline
6
+ from langchain_community.vectorstores import FAISS
7
+ from langchain.chains import RetrievalQA
8
  import gradio as gr
9
+ import spaces
10
+
11
+
12
+ # Load TinyLlama model
13
+ model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
14
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
15
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
16
+
17
+ # Create a text generation pipeline
18
+ pipe = pipeline(
19
+ "text-generation",
20
+ model=model,
21
+ tokenizer=tokenizer,
22
+ max_new_tokens=512,
23
+ do_sample=True,
24
+ temperature=0.7,
25
+ top_p=0.95,
26
+ top_k=40,
27
+ repetition_penalty=1.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  )
29
 
30
+ # Wrap the pipeline in a LangChain HuggingFacePipeline
31
+ llm = HuggingFacePipeline(pipeline=pipe)
32
+
33
+ # Load embeddings
34
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
35
+
36
+ # Load the FAISS index
37
+ db_FAISS = FAISS.load_local("/home/user/app/", embeddings, allow_dangerous_deserialization=True)
38
+
39
+ # Create a RetrievalQA chain
40
+ qa_chain = RetrievalQA.from_chain_type(
41
+ llm=llm,
42
+ chain_type="stuff",
43
+ retriever=db_FAISS.as_retriever(search_kwargs={"k": 3}),
44
+ return_source_documents=True
45
+ )
46
+
47
+ print("fuck14")
48
+ @spaces.GPU
49
+ def query_documents(query):
50
+ result = qa_chain({"query": query})
51
+ answer = result['result']
52
+ sources = [doc.metadata for doc in result['source_documents']]
53
+ return answer, sources
54
+
55
+ # Gradio interface
56
+ def gradio_interface(query):
57
+ answer, sources = query_documents(query)
58
+ source_text = "\n\nSources:\n" + "\n".join([f"Source: {s.get('source', 'Unknown')}, Page: {s.get('page', 'Unknown')}" for s in sources])
59
+ return answer + source_text
60
+
61
+ iface = gr.Interface(
62
+ fn=gradio_interface,
63
+ inputs="text",
64
+ outputs="text",
65
+ title="Document Q&A with TinyLlama",
66
+ description="Ask questions about your documents"
67
+ )
68
 
69
+ # Hugging Face Spaces
70
+ iface.launch()
requirements.txt CHANGED
@@ -1 +1,8 @@
1
- huggingface_hub==0.22.2
 
 
 
 
 
 
 
 
1
+ huggingface_hub
2
+ langchain
3
+ sentence-transformers
4
+ langchain-community
5
+ transformers
6
+ torch
7
+ faiss-gpu
8
+ langchain_huggingface