Spaces:
Sleeping
Sleeping
File size: 11,062 Bytes
97a7638 859da87 97a7638 4ed9501 97a7638 4ed9501 97a7638 4ed9501 97a7638 4ed9501 97a7638 859da87 97a7638 859da87 97a7638 859da87 97a7638 859da87 97a7638 859da87 97a7638 859da87 97a7638 859da87 97a7638 859da87 97a7638 859da87 97a7638 859da87 97a7638 859da87 97a7638 859da87 97a7638 859da87 97a7638 859da87 97a7638 859da87 97a7638 859da87 97a7638 859da87 97a7638 859da87 97a7638 859da87 97a7638 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import os
import gradio as gr
import chromadb
from openai import OpenAI
import json
from sentence_transformers import SentenceTransformer
from loguru import logger
from test_embeddings import test_chromadb_content, initialize_chromadb
class SentenceTransformerEmbeddings:
def __init__(self, model_name: str = 'all-MiniLM-L6-v2'):
self.model = SentenceTransformer(model_name)
def __call__(self, input: list[str]) -> list[list[float]]:
embeddings = self.model.encode(input)
return embeddings.tolist()
class LegalAssistant:
def __init__(self):
try:
# Initialize and verify ChromaDB content
logger.info("Initializing LegalAssistant...")
# Try to verify content, if fails, try to initialize
if not test_chromadb_content():
logger.warning("ChromaDB verification failed, attempting to initialize...")
if not initialize_chromadb():
raise ValueError("Failed to initialize ChromaDB")
# Initialize ChromaDB client
base_path = os.path.dirname(os.path.abspath(__file__))
chroma_path = os.path.join(base_path, 'chroma_db')
self.chroma_client = chromadb.PersistentClient(path=chroma_path)
self.embedding_function = SentenceTransformerEmbeddings()
# Get existing collection
self.collection = self.chroma_client.get_collection(
name="legal_documents",
embedding_function=self.embedding_function
)
logger.info(f"Collection loaded with {self.collection.count()} documents")
# Initialize Mistral AI client
self.mistral_client = OpenAI(
api_key=os.environ.get("MISTRAL_API_KEY", "dfb2j1YDsa298GXTgZo3juSjZLGUCfwi"),
base_url="https://api.mistral.ai/v1"
)
logger.info("LegalAssistant initialized successfully")
except Exception as e:
logger.error(f"Error initializing LegalAssistant: {str(e)}")
raise
def validate_query(self, query: str) -> tuple[bool, str]:
"""Validate the input query"""
if not query or len(query.strip()) < 10:
return False, "Query too short. Please provide more details (minimum 10 characters)."
if len(query) > 500:
return False, "Query too long. Please be more concise (maximum 500 characters)."
return True, ""
def get_response(self, query: str) -> dict:
"""Process query and get response from Mistral AI"""
try:
# Validate query
is_valid, error_message = self.validate_query(query)
if not is_valid:
return {
"answer": error_message,
"references": [],
"summary": "Invalid query",
"confidence": "LOW"
}
# Search ChromaDB for relevant content
results = self.collection.query(
query_texts=[query],
n_results=3
)
if not results['documents'][0]:
return {
"answer": "No relevant information found in the document.",
"references": [],
"summary": "No matching content",
"confidence": "LOW"
}
# Format context with section titles
context_parts = []
references = []
for doc, meta in zip(results['documents'][0], results['metadatas'][0]):
context_parts.append(f"{meta['title']}:\n{doc}")
references.append(meta['title'])
context = "\n\n".join(context_parts)
# Prepare system prompt with explicit JSON format
system_prompt = '''You are a specialized legal assistant that MUST follow these STRICT rules:
1. You MUST ONLY use information from the provided context.
2. DO NOT use any external knowledge about laws, IPC, Constitution, or legal matters.
3. Your response MUST be in this EXACT JSON format:
{
"answer": "Your detailed answer using ONLY information from the context",
"reference_sections": ["List of section titles used from context"],
"summary": "Brief 2-3 line summary",
"confidence": "HIGH/MEDIUM/LOW"
}
Confidence Level Rules:
- HIGH: When exact information is found in context
- MEDIUM: When partial or indirect information is found
- LOW: When information is unclear or not found
If information is not in context, respond with:
{
"answer": "This information is not present in the provided document.",
"reference_sections": [],
"summary": "Information not found in document",
"confidence": "LOW"
}'''
# Prepare user content
content = f'''Context Sections:
{context}
Question: {query}
IMPORTANT:
1. Use ONLY the information from the above context
2. Format your response as a valid JSON object with the exact structure shown above
3. Include ONLY section titles that exist in the context
4. DO NOT add any text outside the JSON structure
5. Ensure the JSON is properly formatted with double quotes'''
# Get response from Mistral AI
response = self.mistral_client.chat.completions.create(
model="mistral-medium",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": content}
],
temperature=0.1,
max_tokens=1000,
response_format={ "type": "json_object" }
)
# Parse and validate response
if response.choices and response.choices[0].message.content:
try:
result = json.loads(response.choices[0].message.content)
# Validate response structure
required_fields = ["answer", "reference_sections", "summary", "confidence"]
if not all(field in result for field in required_fields):
raise ValueError("Missing required fields in response")
# Validate confidence level
if result["confidence"] not in ["HIGH", "MEDIUM", "LOW"]:
result["confidence"] = "LOW"
# Validate references against context
valid_references = [ref for ref in result["reference_sections"]
if ref in references]
# If references don't match, adjust confidence
if len(valid_references) != len(result["reference_sections"]):
result["reference_sections"] = valid_references
result["confidence"] = "LOW"
# Ensure answer and summary are strings
result["answer"] = str(result["answer"])
result["summary"] = str(result["summary"])
return {
"answer": result["answer"],
"references": valid_references,
"summary": result["summary"],
"confidence": result["confidence"]
}
except json.JSONDecodeError as e:
logger.error(f"JSON parsing error: {str(e)}")
return {
"answer": "Error: Failed to parse response format",
"references": [],
"summary": "Response format error",
"confidence": "LOW"
}
except ValueError as e:
logger.error(f"Validation error: {str(e)}")
return {
"answer": "Error: Invalid response structure",
"references": [],
"summary": "Response validation error",
"confidence": "LOW"
}
return {
"answer": "Error: No valid response received",
"references": [],
"summary": "No response generated",
"confidence": "LOW"
}
except Exception as e:
logger.error(f"Error in get_response: {str(e)}")
return {
"answer": f"Error: {str(e)}",
"references": [],
"summary": "System error occurred",
"confidence": "LOW"
}
# Initialize the assistant
try:
assistant = LegalAssistant()
except Exception as e:
logger.error(f"Failed to initialize LegalAssistant: {str(e)}")
raise
def process_query(query: str) -> tuple:
"""Process the query and return formatted response"""
response = assistant.get_response(query)
return (
response["answer"],
", ".join(response["references"]) if response["references"] else "No specific references",
response["summary"] if response["summary"] else "No summary available",
response["confidence"]
)
# Create the Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# Indian Legal Assistant
## Guidelines for Queries:
1. Be specific and clear in your questions
2. End questions with a question mark or period
3. Keep queries between 10-500 characters
4. Questions will be answered based ONLY on the provided legal document
""")
with gr.Row():
query_input = gr.Textbox(
label="Enter your legal query",
placeholder="e.g., What are the main provisions in this document?"
)
with gr.Row():
submit_btn = gr.Button("Submit", variant="primary")
with gr.Row():
confidence_output = gr.Textbox(label="Confidence Level")
with gr.Row():
answer_output = gr.Textbox(label="Answer", lines=5)
with gr.Row():
with gr.Column():
references_output = gr.Textbox(label="Document References", lines=2)
with gr.Column():
summary_output = gr.Textbox(label="Summary", lines=2)
gr.Markdown("""
### Important Notes:
- Responses are based ONLY on the provided document
- No external legal knowledge is used
- All references are from the document itself
- Confidence levels indicate how well the answer matches the document content
""")
submit_btn.click(
fn=process_query,
inputs=[query_input],
outputs=[answer_output, references_output, summary_output, confidence_output]
)
if __name__ == "__main__":
demo.launch() |