File size: 9,358 Bytes
97a7638
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
import gradio as gr
import chromadb
from openai import OpenAI
import json
from sentence_transformers import SentenceTransformer
from loguru import logger
from test_embeddings import test_chromadb_content

class SentenceTransformerEmbeddings:
    def __init__(self, model_name: str = 'all-MiniLM-L6-v2'):
        self.model = SentenceTransformer(model_name)

    def __call__(self, input: list[str]) -> list[list[float]]:
        embeddings = self.model.encode(input)
        return embeddings.tolist()

class LegalAssistant:
    def __init__(self):
        try:
            # Verify ChromaDB content first
            if not test_chromadb_content():
                raise ValueError("ChromaDB content verification failed")
            
            # Initialize ChromaDB
            base_path = os.path.dirname(os.path.abspath(__file__))
            chroma_path = os.path.join(base_path, 'chroma_db')
            
            self.chroma_client = chromadb.PersistentClient(path=chroma_path)
            self.embedding_function = SentenceTransformerEmbeddings()
            
            # Get existing collection
            self.collection = self.chroma_client.get_collection(
                name="legal_documents",
                embedding_function=self.embedding_function
            )
            
            # Initialize Mistral AI client
            self.mistral_client = OpenAI(
                api_key=os.environ.get("MISTRAL_API_KEY", "dfb2j1YDsa298GXTgZo3juSjZLGUCfwi"),
                base_url="https://api.mistral.ai/v1"
            )
            
            logger.info("LegalAssistant initialized successfully")
            
        except Exception as e:
            logger.error(f"Error initializing LegalAssistant: {str(e)}")
            raise

    def validate_query(self, query: str) -> tuple[bool, str]:
        """Validate the input query"""
        if not query or len(query.strip()) < 10:
            return False, "Query too short. Please provide more details (minimum 10 characters)."
        if len(query) > 500:
            return False, "Query too long. Please be more concise (maximum 500 characters)."
        return True, ""

    def get_response(self, query: str) -> dict:
        """Process query and get response from Mistral AI"""
        try:
            # Validate query
            is_valid, error_message = self.validate_query(query)
            if not is_valid:
                return {
                    "answer": error_message,
                    "references": [],
                    "summary": "Invalid query",
                    "confidence": "LOW"
                }

            # Search ChromaDB for relevant content
            results = self.collection.query(
                query_texts=[query],
                n_results=3
            )
            
            if not results['documents'][0]:
                return {
                    "answer": "No relevant information found in the document.",
                    "references": [],
                    "summary": "No matching content",
                    "confidence": "LOW"
                }
            
            # Format context with section titles
            context_parts = []
            references = []
            
            for doc, meta in zip(results['documents'][0], results['metadatas'][0]):
                context_parts.append(f"{meta['title']}:\n{doc}")
                references.append(f"{meta['title']} (Section {meta['section_number']})")
            
            context = "\n\n".join(context_parts)
            
            # Prepare content for Mistral AI
            system_prompt = """You are a specialized legal assistant that MUST follow these STRICT rules:

CRITICAL RULE:
YOU MUST ONLY USE INFORMATION FROM THE PROVIDED CONTEXT. DO NOT USE ANY EXTERNAL KNOWLEDGE.

RESPONSE FORMAT RULES:
1. ALWAYS structure your response in this exact JSON format:
   {
     "answer": "Your detailed answer here using ONLY information from the provided context",
     "reference_sections": ["Exact section titles from the context"],
     "summary": "2-3 line summary using ONLY information from context",
     "confidence": "HIGH/MEDIUM/LOW based on context match"
   }

STRICT CONTENT RULES:
1. NEVER mention or reference any laws not present in the context
2. If the information is not in the context, respond with LOW confidence
3. ONLY cite sections that are explicitly present in the provided context
4. DO NOT make assumptions or inferences beyond the context
5. DO NOT combine information from external knowledge"""

            content = f"""IMPORTANT: ONLY use information from the following context to answer the question.

Context Sections:
{context}

Available Document Sections:
{', '.join(references)}

Question: {query}

Remember: ONLY use information from the above context."""

            # Get response from Mistral AI
            response = self.mistral_client.chat.completions.create(
                model="mistral-medium",
                messages=[
                    {"role": "system", "content": system_prompt},
                    {"role": "user", "content": content}
                ],
                temperature=0.1,
                max_tokens=1000
            )
            
            # Parse and validate response
            if response.choices and response.choices[0].message.content:
                try:
                    result = json.loads(response.choices[0].message.content)
                    
                    # Validate references
                    valid_references = [ref for ref in result.get("reference_sections", [])
                                     if any(source.split(" (Section")[0] in ref for source in references)]
                    
                    if len(valid_references) != len(result.get("reference_sections", [])):
                        logger.warning("Response contained unauthorized references")
                        return {
                            "answer": "Error: Response contained unauthorized references",
                            "references": [],
                            "summary": "Invalid response generated",
                            "confidence": "LOW"
                        }
                    
                    return {
                        "answer": result.get("answer", "No answer provided"),
                        "references": valid_references,
                        "summary": result.get("summary", ""),
                        "confidence": result.get("confidence", "LOW")
                    }
                    
                except json.JSONDecodeError:
                    logger.error("Failed to parse response JSON")
                    return {
                        "answer": "Error: Invalid response format",
                        "references": [],
                        "summary": "Response parsing failed",
                        "confidence": "LOW"
                    }
            
            return {
                "answer": "No valid response received",
                "references": [],
                "summary": "Response generation failed",
                "confidence": "LOW"
            }
            
        except Exception as e:
            logger.error(f"Error in get_response: {str(e)}")
            return {
                "answer": f"Error: {str(e)}",
                "references": [],
                "summary": "System error occurred",
                "confidence": "LOW"
            }

# Initialize the assistant
try:
    assistant = LegalAssistant()
except Exception as e:
    logger.error(f"Failed to initialize LegalAssistant: {str(e)}")
    raise

def process_query(query: str) -> tuple:
    """Process the query and return formatted response"""
    response = assistant.get_response(query)
    return (
        response["answer"],
        ", ".join(response["references"]) if response["references"] else "No specific references",
        response["summary"] if response["summary"] else "No summary available",
        response["confidence"]
    )

# Create the Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # Indian Legal Assistant
    ## Guidelines for Queries:
    1. Be specific and clear in your questions
    2. End questions with a question mark or period
    3. Keep queries between 10-500 characters
    4. Questions will be answered based ONLY on the provided legal document
    """)
    
    with gr.Row():
        query_input = gr.Textbox(
            label="Enter your legal query",
            placeholder="e.g., What are the main provisions in this document?"
        )
    
    with gr.Row():
        submit_btn = gr.Button("Submit", variant="primary")
    
    with gr.Row():
        confidence_output = gr.Textbox(label="Confidence Level")
    
    with gr.Row():
        answer_output = gr.Textbox(label="Answer", lines=5)
    
    with gr.Row():
        with gr.Column():
            references_output = gr.Textbox(label="Document References", lines=3)
        with gr.Column():
            summary_output = gr.Textbox(label="Summary", lines=2)
    
    submit_btn.click(
        fn=process_query,
        inputs=[query_input],
        outputs=[answer_output, references_output, summary_output, confidence_output]
    )

if __name__ == "__main__":
    demo.launch()