Spaces:
Sleeping
Sleeping
File size: 9,358 Bytes
97a7638 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import os
import gradio as gr
import chromadb
from openai import OpenAI
import json
from sentence_transformers import SentenceTransformer
from loguru import logger
from test_embeddings import test_chromadb_content
class SentenceTransformerEmbeddings:
def __init__(self, model_name: str = 'all-MiniLM-L6-v2'):
self.model = SentenceTransformer(model_name)
def __call__(self, input: list[str]) -> list[list[float]]:
embeddings = self.model.encode(input)
return embeddings.tolist()
class LegalAssistant:
def __init__(self):
try:
# Verify ChromaDB content first
if not test_chromadb_content():
raise ValueError("ChromaDB content verification failed")
# Initialize ChromaDB
base_path = os.path.dirname(os.path.abspath(__file__))
chroma_path = os.path.join(base_path, 'chroma_db')
self.chroma_client = chromadb.PersistentClient(path=chroma_path)
self.embedding_function = SentenceTransformerEmbeddings()
# Get existing collection
self.collection = self.chroma_client.get_collection(
name="legal_documents",
embedding_function=self.embedding_function
)
# Initialize Mistral AI client
self.mistral_client = OpenAI(
api_key=os.environ.get("MISTRAL_API_KEY", "dfb2j1YDsa298GXTgZo3juSjZLGUCfwi"),
base_url="https://api.mistral.ai/v1"
)
logger.info("LegalAssistant initialized successfully")
except Exception as e:
logger.error(f"Error initializing LegalAssistant: {str(e)}")
raise
def validate_query(self, query: str) -> tuple[bool, str]:
"""Validate the input query"""
if not query or len(query.strip()) < 10:
return False, "Query too short. Please provide more details (minimum 10 characters)."
if len(query) > 500:
return False, "Query too long. Please be more concise (maximum 500 characters)."
return True, ""
def get_response(self, query: str) -> dict:
"""Process query and get response from Mistral AI"""
try:
# Validate query
is_valid, error_message = self.validate_query(query)
if not is_valid:
return {
"answer": error_message,
"references": [],
"summary": "Invalid query",
"confidence": "LOW"
}
# Search ChromaDB for relevant content
results = self.collection.query(
query_texts=[query],
n_results=3
)
if not results['documents'][0]:
return {
"answer": "No relevant information found in the document.",
"references": [],
"summary": "No matching content",
"confidence": "LOW"
}
# Format context with section titles
context_parts = []
references = []
for doc, meta in zip(results['documents'][0], results['metadatas'][0]):
context_parts.append(f"{meta['title']}:\n{doc}")
references.append(f"{meta['title']} (Section {meta['section_number']})")
context = "\n\n".join(context_parts)
# Prepare content for Mistral AI
system_prompt = """You are a specialized legal assistant that MUST follow these STRICT rules:
CRITICAL RULE:
YOU MUST ONLY USE INFORMATION FROM THE PROVIDED CONTEXT. DO NOT USE ANY EXTERNAL KNOWLEDGE.
RESPONSE FORMAT RULES:
1. ALWAYS structure your response in this exact JSON format:
{
"answer": "Your detailed answer here using ONLY information from the provided context",
"reference_sections": ["Exact section titles from the context"],
"summary": "2-3 line summary using ONLY information from context",
"confidence": "HIGH/MEDIUM/LOW based on context match"
}
STRICT CONTENT RULES:
1. NEVER mention or reference any laws not present in the context
2. If the information is not in the context, respond with LOW confidence
3. ONLY cite sections that are explicitly present in the provided context
4. DO NOT make assumptions or inferences beyond the context
5. DO NOT combine information from external knowledge"""
content = f"""IMPORTANT: ONLY use information from the following context to answer the question.
Context Sections:
{context}
Available Document Sections:
{', '.join(references)}
Question: {query}
Remember: ONLY use information from the above context."""
# Get response from Mistral AI
response = self.mistral_client.chat.completions.create(
model="mistral-medium",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": content}
],
temperature=0.1,
max_tokens=1000
)
# Parse and validate response
if response.choices and response.choices[0].message.content:
try:
result = json.loads(response.choices[0].message.content)
# Validate references
valid_references = [ref for ref in result.get("reference_sections", [])
if any(source.split(" (Section")[0] in ref for source in references)]
if len(valid_references) != len(result.get("reference_sections", [])):
logger.warning("Response contained unauthorized references")
return {
"answer": "Error: Response contained unauthorized references",
"references": [],
"summary": "Invalid response generated",
"confidence": "LOW"
}
return {
"answer": result.get("answer", "No answer provided"),
"references": valid_references,
"summary": result.get("summary", ""),
"confidence": result.get("confidence", "LOW")
}
except json.JSONDecodeError:
logger.error("Failed to parse response JSON")
return {
"answer": "Error: Invalid response format",
"references": [],
"summary": "Response parsing failed",
"confidence": "LOW"
}
return {
"answer": "No valid response received",
"references": [],
"summary": "Response generation failed",
"confidence": "LOW"
}
except Exception as e:
logger.error(f"Error in get_response: {str(e)}")
return {
"answer": f"Error: {str(e)}",
"references": [],
"summary": "System error occurred",
"confidence": "LOW"
}
# Initialize the assistant
try:
assistant = LegalAssistant()
except Exception as e:
logger.error(f"Failed to initialize LegalAssistant: {str(e)}")
raise
def process_query(query: str) -> tuple:
"""Process the query and return formatted response"""
response = assistant.get_response(query)
return (
response["answer"],
", ".join(response["references"]) if response["references"] else "No specific references",
response["summary"] if response["summary"] else "No summary available",
response["confidence"]
)
# Create the Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# Indian Legal Assistant
## Guidelines for Queries:
1. Be specific and clear in your questions
2. End questions with a question mark or period
3. Keep queries between 10-500 characters
4. Questions will be answered based ONLY on the provided legal document
""")
with gr.Row():
query_input = gr.Textbox(
label="Enter your legal query",
placeholder="e.g., What are the main provisions in this document?"
)
with gr.Row():
submit_btn = gr.Button("Submit", variant="primary")
with gr.Row():
confidence_output = gr.Textbox(label="Confidence Level")
with gr.Row():
answer_output = gr.Textbox(label="Answer", lines=5)
with gr.Row():
with gr.Column():
references_output = gr.Textbox(label="Document References", lines=3)
with gr.Column():
summary_output = gr.Textbox(label="Summary", lines=2)
submit_btn.click(
fn=process_query,
inputs=[query_input],
outputs=[answer_output, references_output, summary_output, confidence_output]
)
if __name__ == "__main__":
demo.launch() |