File size: 13,500 Bytes
97a7638
 
 
 
 
 
 
859da87
97a7638
 
 
 
 
 
 
 
 
 
 
 
4ed9501
3564039
4ed9501
 
97a7638
4ed9501
 
3564039
97a7638
4ed9501
97a7638
 
 
 
 
 
 
 
 
 
 
 
3564039
4ed9501
97a7638
 
 
 
 
 
3564039
97a7638
 
3564039
97a7638
 
 
 
 
3564039
97a7638
3564039
97a7638
 
 
 
 
 
 
 
 
 
3564039
 
97a7638
 
 
 
 
 
 
 
 
 
 
3564039
 
 
97a7638
 
 
 
 
 
 
 
 
859da87
97a7638
 
 
859da87
3564039
97a7638
859da87
 
 
 
3564039
 
 
859da87
 
97a7638
859da87
3564039
 
 
 
 
 
 
 
 
 
97a7638
859da87
 
3564039
859da87
3564039
859da87
 
97a7638
859da87
3564039
97a7638
 
 
 
859da87
3564039
 
 
 
 
 
 
97a7638
 
 
 
 
 
 
 
3564039
 
859da87
97a7638
 
 
 
 
 
 
859da87
 
 
 
 
 
 
 
97a7638
859da87
 
 
 
3564039
 
 
 
859da87
 
3564039
859da87
 
3564039
 
 
 
 
 
 
 
97a7638
 
3564039
 
 
859da87
97a7638
 
859da87
 
 
3564039
 
 
859da87
 
 
 
97a7638
3564039
 
 
97a7638
 
 
 
3564039
 
 
97a7638
 
 
 
 
 
 
3564039
 
97a7638
 
 
 
 
 
 
3564039
97a7638
 
 
 
 
 
 
3564039
 
97a7638
 
 
 
 
 
3564039
 
 
 
 
97a7638
3564039
 
97a7638
3564039
 
 
 
97a7638
 
 
 
3564039
 
97a7638
 
 
3564039
97a7638
 
3564039
97a7638
 
3564039
 
 
 
97a7638
 
 
3564039
 
 
 
97a7638
3564039
 
 
 
97a7638
859da87
 
3564039
 
 
 
859da87
 
97a7638
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import os
import gradio as gr
import chromadb
from openai import OpenAI
import json
from sentence_transformers import SentenceTransformer
from loguru import logger
from test_embeddings import test_chromadb_content, initialize_chromadb

class SentenceTransformerEmbeddings:
    def __init__(self, model_name: str = 'all-MiniLM-L6-v2'):
        self.model = SentenceTransformer(model_name)

    def __call__(self, input: list[str]) -> list[list[float]]:
        embeddings = self.model.encode(input)
        return embeddings.tolist()

class LegalAssistant:
    def __init__(self):
        try:
            # Initialize and verify ChromaDB content
            logger.info("Initializing Bharateeya Nyaya Sanhita Assistant...")
            
            # Try to verify content, if fails, try to initialize
            if not test_chromadb_content():
                logger.warning("ChromaDB verification failed, attempting to initialize...")
                if not initialize_chromadb():
                    raise ValueError("Failed to initialize ChromaDB with BNS content")
            
            # Initialize ChromaDB client
            base_path = os.path.dirname(os.path.abspath(__file__))
            chroma_path = os.path.join(base_path, 'chroma_db')
            
            self.chroma_client = chromadb.PersistentClient(path=chroma_path)
            self.embedding_function = SentenceTransformerEmbeddings()
            
            # Get existing collection
            self.collection = self.chroma_client.get_collection(
                name="legal_documents",
                embedding_function=self.embedding_function
            )
            
            logger.info(f"BNS Collection loaded with {self.collection.count()} sections")
            
            # Initialize Mistral AI client
            self.mistral_client = OpenAI(
                api_key=os.environ.get("MISTRAL_API_KEY", "dfb2j1YDsa298GXTgZo3juSjZLGUCfwi"),
                base_url="https://api.mistral.ai/v1"
            )
            
            logger.info("BNS Assistant initialized successfully")
            
        except Exception as e:
            logger.error(f"Error initializing BNS Assistant: {str(e)}")
            raise

    def validate_query(self, query: str) -> tuple[bool, str]:
        """Validate the input query"""
        if not query or len(query.strip()) < 10:
            return False, "Please provide a more detailed question about the Bharateeya Nyaya Sanhita (minimum 10 characters)."
        if len(query) > 500:
            return False, "Please make your question more concise (maximum 500 characters)."
        return True, ""

    def get_response(self, query: str) -> dict:
        """Process query and get response from Mistral AI"""
        try:
            # Validate query
            is_valid, error_message = self.validate_query(query)
            if not is_valid:
                return {
                    "answer": error_message,
                    "references": ["No specific references from Bharateeya Nyaya Sanhita"],
                    "summary": "Query validation failed",
                    "confidence": "LOW"
                }

            # Search ChromaDB for relevant content
            results = self.collection.query(
                query_texts=[query],
                n_results=3
            )
            
            if not results['documents'][0]:
                return {
                    "answer": "No relevant information found in the Bharateeya Nyaya Sanhita.",
                    "references": ["No specific references from Bharateeya Nyaya Sanhita"],
                    "summary": "No matching content in BNS",
                    "confidence": "LOW"
                }
            
            # Format context with section titles
            context_parts = []
            references = []
            
            for doc, meta in zip(results['documents'][0], results['metadatas'][0]):
                context_parts.append(f"{meta['title']}:\n{doc}")
                references.append(meta['title'])
            
            context = "\n\n".join(context_parts)
            
            # Prepare system prompt with explicit JSON format
            system_prompt = '''You are a specialized legal assistant for the Bharateeya Nyaya Sanhita (BNS) that MUST follow these STRICT rules:

1. You MUST ONLY use information from the provided context.
2. DO NOT use any external knowledge about laws, IPC, Constitution, or legal matters.
3. Your response MUST be in this EXACT JSON format:
{
    "answer": "Your detailed answer explaining BNS sections in simple, easy-to-understand language. Start with 'The Bharateeya Nyaya Sanhita...'",
    "reference_sections": ["List of relevant BNS section titles"],
    "summary": "Provide a user-friendly summary that explains:\n1. What BNS sections were found\n2. What each section covers\n3. How these sections relate to the query\nStart with 'In the Bharateeya Nyaya Sanhita...'",
    "confidence": "HIGH/MEDIUM/LOW"
}

Confidence Level Rules:
- HIGH: When exact matching BNS sections and their details are found
- MEDIUM: When partially relevant BNS sections are found
- LOW: When sections are not clearly relevant or not found

Response Guidelines:
1. Always mention "Bharateeya Nyaya Sanhita" when referencing sections
2. Explain legal terms in simple language
3. Make the summary easy to understand for non-legal persons
4. Break down complex legal concepts into simple explanations
5. Use everyday examples where appropriate

If information is not in context, respond with:
{
    "answer": "The Bharateeya Nyaya Sanhita sections related to your query are not present in the provided document.",
    "reference_sections": [],
    "summary": "No relevant sections found in the Bharateeya Nyaya Sanhita document",
    "confidence": "LOW"
}'''

            # Prepare user content
            content = f'''Context Sections from Bharateeya Nyaya Sanhita:
{context}

Question: {query}

IMPORTANT:
1. Use ONLY the information from the above BNS context
2. Format your response as a valid JSON object
3. Always reference "Bharateeya Nyaya Sanhita" in your response
4. Explain each section in simple, user-friendly language
5. Make the summary comprehensive but easy to understand
6. Break down legal concepts for non-legal persons
7. Ensure proper JSON formatting with double quotes'''

            # Get response from Mistral AI
            response = self.mistral_client.chat.completions.create(
                model="mistral-medium",
                messages=[
                    {"role": "system", "content": system_prompt},
                    {"role": "user", "content": content}
                ],
                temperature=0.3,
                max_tokens=1500,
                response_format={ "type": "json_object" }
            )
            
            # Parse and validate response
            if response.choices and response.choices[0].message.content:
                try:
                    result = json.loads(response.choices[0].message.content)
                    
                    # Validate response structure
                    required_fields = ["answer", "reference_sections", "summary", "confidence"]
                    if not all(field in result for field in required_fields):
                        raise ValueError("Missing required fields in response")
                    
                    # Validate confidence level
                    if result["confidence"] not in ["HIGH", "MEDIUM", "LOW"]:
                        result["confidence"] = "LOW"
                    
                    # Validate references against context
                    valid_references = [ref for ref in result["reference_sections"]
                                     if ref in references]
                    
                    # Format references to include BNS
                    formatted_references = [f"Bharateeya Nyaya Sanhita - {ref}" 
                                         for ref in valid_references]
                    
                    # If references don't match, adjust confidence
                    if len(valid_references) != len(result["reference_sections"]):
                        formatted_references = ["No specific references from Bharateeya Nyaya Sanhita"]
                        result["confidence"] = "LOW"
                    
                    # Ensure answer and summary are properly formatted
                    answer = str(result["answer"])
                    if not answer.startswith("The Bharateeya Nyaya Sanhita"):
                        answer = f"The Bharateeya Nyaya Sanhita states that {answer.lower()}"
                    
                    summary = str(result["summary"])
                    if not summary.startswith("In the Bharateeya Nyaya Sanhita"):
                        summary = f"In the Bharateeya Nyaya Sanhita, {summary.lower()}"
                    
                    return {
                        "answer": answer,
                        "references": formatted_references,
                        "summary": summary,
                        "confidence": result["confidence"]
                    }
                    
                except json.JSONDecodeError as e:
                    logger.error(f"JSON parsing error: {str(e)}")
                    return {
                        "answer": "Error: Unable to process the response format",
                        "references": ["No specific references from Bharateeya Nyaya Sanhita"],
                        "summary": "Could not generate summary due to processing error",
                        "confidence": "LOW"
                    }
                except ValueError as e:
                    logger.error(f"Validation error: {str(e)}")
                    return {
                        "answer": "Error: Response structure was invalid",
                        "references": ["No specific references from Bharateeya Nyaya Sanhita"],
                        "summary": "Could not generate summary due to validation error",
                        "confidence": "LOW"
                    }
            
            return {
                "answer": "Error: No valid response received from the system",
                "references": ["No specific references from Bharateeya Nyaya Sanhita"],
                "summary": "Could not generate summary due to system error",
                "confidence": "LOW"
            }
            
        except Exception as e:
            logger.error(f"Error in get_response: {str(e)}")
            return {
                "answer": f"Error: {str(e)}",
                "references": ["No specific references from Bharateeya Nyaya Sanhita"],
                "summary": "Could not generate summary due to system error",
                "confidence": "LOW"
            }

# Initialize the assistant
try:
    assistant = LegalAssistant()
except Exception as e:
    logger.error(f"Failed to initialize BNS Assistant: {str(e)}")
    raise

def process_query(query: str) -> tuple:
    """Process the query and return formatted response"""
    response = assistant.get_response(query)
    return (
        response["answer"],
        ", ".join(response["references"]),
        response["summary"],
        response["confidence"]
    )

# Create the Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # Bharateeya Nyaya Sanhita Assistant
    ## Your Guide to Understanding the BNS

    This assistant helps you understand sections and provisions of the Bharateeya Nyaya Sanhita (BNS) in simple, clear language.
    
    ## Guidelines for Queries:
    1. Ask specific questions about BNS sections or topics
    2. End questions with a question mark
    3. Keep queries between 10-500 characters
    4. Example queries:
       - "What does the BNS say about theft?"
       - "Explain the provisions related to property offenses in BNS."
       - "What are the sections dealing with criminal breach of trust?"
    """)
    
    with gr.Row():
        query_input = gr.Textbox(
            label="Enter your query about Bharateeya Nyaya Sanhita",
            placeholder="e.g., What are the main provisions about theft in BNS?"
        )
    
    with gr.Row():
        submit_btn = gr.Button("Get BNS Information", variant="primary")
    
    with gr.Row():
        confidence_output = gr.Textbox(label="Information Reliability Level")
    
    with gr.Row():
        answer_output = gr.Textbox(
            label="Detailed Explanation", 
            lines=5
        )
    
    with gr.Row():
        with gr.Column():
            references_output = gr.Textbox(
                label="BNS Section References",
                lines=2
            )
        with gr.Column():
            summary_output = gr.Textbox(
                label="Simple Summary",
                lines=2
            )
    
    gr.Markdown("""
    ### Important Notes:
    - All information is sourced directly from the Bharateeya Nyaya Sanhita
    - Responses are based only on the official BNS document
    - The assistant explains legal concepts in simple, understandable language
    - Reliability level indicates how well your query matches BNS content
    """)
    
    submit_btn.click(
        fn=process_query,
        inputs=[query_input],
        outputs=[answer_output, references_output, summary_output, confidence_output]
    )

if __name__ == "__main__":
    demo.launch()