veerukhannan commited on
Commit
105179a
Β·
verified Β·
1 Parent(s): a715065

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +80 -70
app.py CHANGED
@@ -7,28 +7,25 @@ import os
7
  from astrapy.db import AstraDB
8
  from dotenv import load_dotenv
9
  from huggingface_hub import login
10
- from sentence_transformers import SentenceTransformer
11
- import json
 
 
12
 
13
  # Load environment variables
14
  load_dotenv()
15
-
16
- # Login to Hugging Face Hub
17
  login(token=os.getenv("HUGGINGFACE_API_TOKEN"))
18
 
 
 
 
19
  class LegalTextSearchBot:
20
  def __init__(self):
21
- # Initialize AstraDB connection
22
  self.astra_db = AstraDB(
23
  token=os.getenv("ASTRA_DB_APPLICATION_TOKEN"),
24
  api_endpoint=os.getenv("ASTRA_DB_API_ENDPOINT")
25
  )
26
-
27
- # Set your collection
28
- self.collection = self.astra_db.collection(os.getenv("ASTRA_DB_COLLECTION"))
29
-
30
- # Initialize the models
31
- self.embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
32
 
33
  pipe = pipeline(
34
  "text-generation",
@@ -40,7 +37,6 @@ class LegalTextSearchBot:
40
  )
41
  self.llm = HuggingFacePipeline(pipeline=pipe)
42
 
43
- # Create prompt template
44
  self.template = """
45
  IMPORTANT: You are a legal assistant that provides accurate information based on the Indian legal sections provided in the context.
46
 
@@ -62,22 +58,21 @@ class LegalTextSearchBot:
62
 
63
  self.prompt = ChatPromptTemplate.from_template(self.template)
64
  self.chat_history = ""
 
65
 
66
  def _search_astra(self, query: str) -> List[Dict]:
67
- """Search AstraDB for relevant legal sections"""
68
- try:
69
- # Generate embedding for the query
70
- query_embedding = self.embedding_model.encode(query).tolist()
71
 
72
- # First try searching in searchable_text
73
  results = list(self.collection.vector_find(
74
- query_embedding,
75
  limit=5,
76
- fields=["section_number", "title", "chapter_info", "content", "searchable_text"]
 
77
  ))
78
 
79
- if not results:
80
- # If no results, try a more general search
81
  results = list(self.collection.find(
82
  {},
83
  limit=5
@@ -86,55 +81,59 @@ class LegalTextSearchBot:
86
  return results
87
 
88
  except Exception as e:
89
- print(f"Error searching AstraDB: {str(e)}")
90
- return []
 
91
 
92
  def format_section(self, section: Dict) -> str:
93
- """Format a section for display"""
94
- try:
95
- chapter_info = section.get('chapter_info', {})
96
- chapter_title = chapter_info.get('title', 'N/A') if isinstance(chapter_info, dict) else 'N/A'
97
 
 
98
  return f"""
 
 
99
  Section {section.get('section_number', 'N/A')}: {section.get('title', 'N/A')}
100
- Chapter: {chapter_title}
101
 
102
  Content:
103
  {section.get('content', 'N/A')}
104
 
105
- {"="*80}
 
106
  """
107
  except Exception as e:
108
  print(f"Error formatting section: {str(e)}")
109
  return str(section)
110
 
111
- def search_sections(self, query: str) -> Tuple[str, str]:
112
- """Search legal sections and return both raw results and AI interpretation"""
 
113
  try:
114
- # Search AstraDB for relevant sections
115
  search_results = self._search_astra(query)
116
 
117
  if not search_results:
118
  return "No relevant sections found.", "I apologize, but I cannot find relevant sections in the database."
119
 
120
- # Format raw results
121
  raw_results = []
122
  context_parts = []
123
 
124
- for result in search_results:
125
- # Format for display
 
 
126
  raw_results.append(self.format_section(result))
127
-
128
- # Add to context for AI
129
  context_parts.append(f"""
130
  Section {result.get('section_number')}: {result.get('title')}
131
  {result.get('content', '')}
132
  """)
 
133
 
134
- # Combine context for AI
135
  context = "\n\n".join(context_parts)
136
 
137
- # Generate AI interpretation
138
  chain = self.prompt | self.llm
139
  ai_response = chain.invoke({
140
  "context": context,
@@ -144,30 +143,33 @@ Section {result.get('section_number')}: {result.get('title')}
144
 
145
  self.chat_history += f"\nUser: {query}\nAI: {ai_response}\n"
146
 
 
147
  return "\n".join(raw_results), ai_response
148
 
 
 
149
  except Exception as e:
150
  error_msg = f"Error processing query: {str(e)}"
151
  print(error_msg)
152
  return error_msg, "An error occurred while processing your query."
153
 
 
 
 
154
  def create_interface():
155
- """Create the Gradio interface"""
156
- with gr.Blocks(title="Legal Text Search System", theme=gr.themes.Soft()) as iface:
157
  gr.Markdown("""
158
- # πŸ“š Legal Text Search System
159
 
160
- This system allows you to search through Indian legal sections and get both:
161
- 1. πŸ“œ Raw section contents that match your query
162
- 2. πŸ€– AI-powered interpretation of the relevant sections
163
 
164
  Enter your legal query below:
165
  """)
166
 
167
- # Initialize the search bot
168
  search_bot = LegalTextSearchBot()
169
 
170
- # Create input and output components
171
  with gr.Row():
172
  query_input = gr.Textbox(
173
  label="Your Query",
@@ -176,57 +178,65 @@ def create_interface():
176
  )
177
 
178
  with gr.Row():
179
- search_button = gr.Button("πŸ” Search Legal Sections", variant="primary")
 
 
 
180
 
181
  with gr.Row():
182
  with gr.Column():
183
- raw_output = gr.Textbox(
184
- label="πŸ“œ Relevant Legal Sections",
185
- lines=15,
186
- max_lines=30
187
  )
188
  with gr.Column():
189
- ai_output = gr.Textbox(
190
- label="πŸ€– AI Interpretation",
191
- lines=15,
192
- max_lines=30
193
  )
194
 
195
- # Add example queries
196
  gr.Examples(
197
  examples=[
198
  "What are the penalties for public servants who conceal information?",
199
- "What is the punishment for corruption?",
200
- "What happens if a public servant fails to prevent an offense?",
201
- "What are the legal consequences for concealing design to commit offence?",
202
- "Explain the duties and responsibilities of public servants"
203
  ],
204
  inputs=query_input,
205
  label="Example Queries"
206
  )
207
 
208
- # Set up the search function
209
  def search(query):
210
- raw_results, ai_response = search_bot.search_sections(query)
211
- return raw_results, ai_response
 
 
 
212
 
213
- # Connect the button to the search function
214
  search_button.click(
215
  fn=search,
216
  inputs=query_input,
217
- outputs=[raw_output, ai_output]
 
 
 
 
 
 
 
218
  )
219
 
220
- # Also allow pressing Enter to search
221
  query_input.submit(
222
  fn=search,
223
  inputs=query_input,
224
- outputs=[raw_output, ai_output]
 
225
  )
226
 
227
  return iface
228
 
229
- # Create and launch the interface
230
  if __name__ == "__main__":
231
  demo = create_interface()
232
- demo.launch()
 
 
 
 
7
  from astrapy.db import AstraDB
8
  from dotenv import load_dotenv
9
  from huggingface_hub import login
10
+ import time
11
+ import threading
12
+ from queue import Queue
13
+ import asyncio
14
 
15
  # Load environment variables
16
  load_dotenv()
 
 
17
  login(token=os.getenv("HUGGINGFACE_API_TOKEN"))
18
 
19
+ class SearchCancelled(Exception):
20
+ pass
21
+
22
  class LegalTextSearchBot:
23
  def __init__(self):
 
24
  self.astra_db = AstraDB(
25
  token=os.getenv("ASTRA_DB_APPLICATION_TOKEN"),
26
  api_endpoint=os.getenv("ASTRA_DB_API_ENDPOINT")
27
  )
28
+ self.collection = self.astra_db.collection("legal_content")
 
 
 
 
 
29
 
30
  pipe = pipeline(
31
  "text-generation",
 
37
  )
38
  self.llm = HuggingFacePipeline(pipeline=pipe)
39
 
 
40
  self.template = """
41
  IMPORTANT: You are a legal assistant that provides accurate information based on the Indian legal sections provided in the context.
42
 
 
58
 
59
  self.prompt = ChatPromptTemplate.from_template(self.template)
60
  self.chat_history = ""
61
+ self.cancel_search = False
62
 
63
  def _search_astra(self, query: str) -> List[Dict]:
64
+ if self.cancel_search:
65
+ raise SearchCancelled("Search was cancelled by user")
 
 
66
 
67
+ try:
68
  results = list(self.collection.vector_find(
69
+ query,
70
  limit=5,
71
+ fields=["section_number", "title", "chapter_number", "chapter_title",
72
+ "content", "type", "metadata"]
73
  ))
74
 
75
+ if not results and not self.cancel_search:
 
76
  results = list(self.collection.find(
77
  {},
78
  limit=5
 
81
  return results
82
 
83
  except Exception as e:
84
+ if not isinstance(e, SearchCancelled):
85
+ print(f"Error searching AstraDB: {str(e)}")
86
+ raise
87
 
88
  def format_section(self, section: Dict) -> str:
89
+ if self.cancel_search:
90
+ raise SearchCancelled("Search was cancelled by user")
 
 
91
 
92
+ try:
93
  return f"""
94
+ {'='*80}
95
+ Chapter {section.get('chapter_number', 'N/A')}: {section.get('chapter_title', 'N/A')}
96
  Section {section.get('section_number', 'N/A')}: {section.get('title', 'N/A')}
97
+ Type: {section.get('type', 'section')}
98
 
99
  Content:
100
  {section.get('content', 'N/A')}
101
 
102
+ References: {', '.join(section.get('metadata', {}).get('references', [])) or 'None'}
103
+ {'='*80}
104
  """
105
  except Exception as e:
106
  print(f"Error formatting section: {str(e)}")
107
  return str(section)
108
 
109
+ def search_sections(self, query: str, progress=gr.Progress()) -> Tuple[str, str]:
110
+ self.cancel_search = False
111
+
112
  try:
113
+ progress(0, desc="Searching relevant sections...")
114
  search_results = self._search_astra(query)
115
 
116
  if not search_results:
117
  return "No relevant sections found.", "I apologize, but I cannot find relevant sections in the database."
118
 
119
+ progress(0.3, desc="Processing results...")
120
  raw_results = []
121
  context_parts = []
122
 
123
+ for idx, result in enumerate(search_results):
124
+ if self.cancel_search:
125
+ raise SearchCancelled("Search was cancelled by user")
126
+
127
  raw_results.append(self.format_section(result))
 
 
128
  context_parts.append(f"""
129
  Section {result.get('section_number')}: {result.get('title')}
130
  {result.get('content', '')}
131
  """)
132
+ progress((0.3 + (idx * 0.1)), desc="Processing results...")
133
 
134
+ progress(0.8, desc="Generating AI interpretation...")
135
  context = "\n\n".join(context_parts)
136
 
 
137
  chain = self.prompt | self.llm
138
  ai_response = chain.invoke({
139
  "context": context,
 
143
 
144
  self.chat_history += f"\nUser: {query}\nAI: {ai_response}\n"
145
 
146
+ progress(1.0, desc="Complete!")
147
  return "\n".join(raw_results), ai_response
148
 
149
+ except SearchCancelled:
150
+ return "Search cancelled by user.", "Search was stopped. Please try again with a new query."
151
  except Exception as e:
152
  error_msg = f"Error processing query: {str(e)}"
153
  print(error_msg)
154
  return error_msg, "An error occurred while processing your query."
155
 
156
+ def cancel(self):
157
+ self.cancel_search = True
158
+
159
  def create_interface():
160
+ with gr.Blocks(title="Bharatiya Nyaya Sanhita Search", theme=gr.themes.Soft()) as iface:
 
161
  gr.Markdown("""
162
+ # πŸ“š Bharatiya Nyaya Sanhita Legal Search System
163
 
164
+ Search through the Bharatiya Nyaya Sanhita, 2023 and get:
165
+ 1. πŸ“œ Relevant sections, explanations, and illustrations
166
+ 2. πŸ€– AI-powered interpretation of the legal content
167
 
168
  Enter your legal query below:
169
  """)
170
 
 
171
  search_bot = LegalTextSearchBot()
172
 
 
173
  with gr.Row():
174
  query_input = gr.Textbox(
175
  label="Your Query",
 
178
  )
179
 
180
  with gr.Row():
181
+ with gr.Column(scale=4):
182
+ search_button = gr.Button("πŸ” Search Legal Sections", variant="primary")
183
+ with gr.Column(scale=1):
184
+ stop_button = gr.Button("πŸ›‘ Stop Search", variant="stop")
185
 
186
  with gr.Row():
187
  with gr.Column():
188
+ raw_output = gr.Markdown(
189
+ label="πŸ“œ Relevant Legal Sections"
 
 
190
  )
191
  with gr.Column():
192
+ ai_output = gr.Markdown(
193
+ label="πŸ€– AI Interpretation"
 
 
194
  )
195
 
 
196
  gr.Examples(
197
  examples=[
198
  "What are the penalties for public servants who conceal information?",
199
+ "What constitutes criminal conspiracy?",
200
+ "Explain the provisions related to culpable homicide",
201
+ "What are the penalties for causing death by negligence?",
202
+ "What are the punishments for corruption?"
203
  ],
204
  inputs=query_input,
205
  label="Example Queries"
206
  )
207
 
 
208
  def search(query):
209
+ return search_bot.search_sections(query)
210
+
211
+ def stop_search():
212
+ search_bot.cancel()
213
+ return "Search cancelled.", "Search stopped by user."
214
 
 
215
  search_button.click(
216
  fn=search,
217
  inputs=query_input,
218
+ outputs=[raw_output, ai_output],
219
+ cancels=[stop_button] # Cancel any ongoing search when stop is clicked
220
+ )
221
+
222
+ stop_button.click(
223
+ fn=stop_search,
224
+ outputs=[raw_output, ai_output],
225
+ cancels=[search_button] # Cancel the search button when stop is clicked
226
  )
227
 
 
228
  query_input.submit(
229
  fn=search,
230
  inputs=query_input,
231
+ outputs=[raw_output, ai_output],
232
+ cancels=[stop_button]
233
  )
234
 
235
  return iface
236
 
 
237
  if __name__ == "__main__":
238
  demo = create_interface()
239
+ demo.launch()
240
+ else:
241
+ demo = create_interface()
242
+ app = demo.launch(share=False)