Spaces:
Sleeping
Sleeping
Update test_embeddings.py
Browse files- test_embeddings.py +131 -28
test_embeddings.py
CHANGED
@@ -1,58 +1,161 @@
|
|
1 |
import logging
|
|
|
2 |
from app import LegalTextSearchBot
|
3 |
import numpy as np
|
|
|
|
|
|
|
4 |
|
5 |
-
logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
logger = logging.getLogger(__name__)
|
7 |
|
8 |
-
def
|
|
|
9 |
try:
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
test_queries = [
|
15 |
"What are the penalties for corruption?",
|
16 |
"Explain criminal conspiracy",
|
17 |
-
"What constitutes culpable homicide?"
|
|
|
|
|
|
|
|
|
|
|
18 |
]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
# Generate embedding
|
24 |
-
logger.info("Generating embedding...")
|
25 |
embedding = bot.get_embedding(query)
|
26 |
|
27 |
-
# Verify embedding
|
28 |
-
|
29 |
-
assert len(embedding) == 1024, f"Embedding dimension should be 1024, got {len(embedding)}"
|
30 |
|
31 |
# Verify embedding values
|
32 |
embedding_array = np.array(embedding)
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
results = bot._search_astra(query)
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
if results:
|
40 |
-
logger.info(f"
|
41 |
-
#
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
46 |
return True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
except Exception as e:
|
49 |
-
logger.error(f"Test failed: {str(e)}")
|
50 |
return False
|
51 |
|
52 |
if __name__ == "__main__":
|
53 |
-
|
54 |
-
success = test_embeddings()
|
55 |
if success:
|
56 |
-
print("\n✅ All
|
57 |
else:
|
58 |
-
print("\n❌
|
|
|
1 |
import logging
|
2 |
+
import os
|
3 |
from app import LegalTextSearchBot
|
4 |
import numpy as np
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
import time
|
7 |
+
from tqdm import tqdm
|
8 |
|
9 |
+
# Configure logging
|
10 |
+
logging.basicConfig(
|
11 |
+
level=logging.INFO,
|
12 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
13 |
+
handlers=[
|
14 |
+
logging.StreamHandler(),
|
15 |
+
logging.FileHandler('embedding_tests.log')
|
16 |
+
]
|
17 |
+
)
|
18 |
logger = logging.getLogger(__name__)
|
19 |
|
20 |
+
def test_environment():
|
21 |
+
"""Test environment variables and connections"""
|
22 |
try:
|
23 |
+
load_dotenv()
|
24 |
+
required_vars = [
|
25 |
+
"ASTRA_DB_APPLICATION_TOKEN",
|
26 |
+
"ASTRA_DB_API_ENDPOINT",
|
27 |
+
"ASTRA_DB_COLLECTION",
|
28 |
+
"HUGGINGFACE_API_TOKEN"
|
29 |
+
]
|
30 |
+
|
31 |
+
missing_vars = [var for var in required_vars if not os.getenv(var)]
|
32 |
+
if missing_vars:
|
33 |
+
logger.error(f"Missing environment variables: {missing_vars}")
|
34 |
+
return False
|
35 |
+
|
36 |
+
logger.info("✅ Environment variables verified")
|
37 |
+
return True
|
38 |
|
39 |
+
except Exception as e:
|
40 |
+
logger.error(f"Environment test failed: {str(e)}")
|
41 |
+
return False
|
42 |
+
|
43 |
+
def test_bot_initialization():
|
44 |
+
"""Test LegalTextSearchBot initialization"""
|
45 |
+
try:
|
46 |
+
bot = LegalTextSearchBot()
|
47 |
+
logger.info("✅ Bot initialization successful")
|
48 |
+
return bot
|
49 |
+
except Exception as e:
|
50 |
+
logger.error(f"Bot initialization failed: {str(e)}")
|
51 |
+
return None
|
52 |
+
|
53 |
+
def test_embedding_generation(bot):
|
54 |
+
"""Test embedding generation"""
|
55 |
+
try:
|
56 |
test_queries = [
|
57 |
"What are the penalties for corruption?",
|
58 |
"Explain criminal conspiracy",
|
59 |
+
"What constitutes culpable homicide?",
|
60 |
+
"", # Test empty string
|
61 |
+
" ", # Test whitespace
|
62 |
+
"a" * 1000, # Test long string
|
63 |
+
"Section 123 of IPC", # Test with numbers
|
64 |
+
"धारा 123", # Test with non-English
|
65 |
]
|
66 |
|
67 |
+
logger.info("Testing embedding generation...")
|
68 |
+
for query in tqdm(test_queries, desc="Testing queries"):
|
|
|
|
|
|
|
69 |
embedding = bot.get_embedding(query)
|
70 |
|
71 |
+
# Verify embedding dimension
|
72 |
+
assert len(embedding) == 1024, f"Wrong embedding dimension: {len(embedding)}"
|
|
|
73 |
|
74 |
# Verify embedding values
|
75 |
embedding_array = np.array(embedding)
|
76 |
+
assert not np.isnan(embedding_array).any(), "Embedding contains NaN values"
|
77 |
+
assert not np.isinf(embedding_array).any(), "Embedding contains infinite values"
|
78 |
+
|
79 |
+
# Log embedding statistics
|
80 |
+
logger.debug(f"Query: {query[:50]}...")
|
81 |
+
logger.debug(f"Embedding stats - Mean: {embedding_array.mean():.4f}, Std: {embedding_array.std():.4f}")
|
82 |
|
83 |
+
logger.info("✅ Embedding generation tests passed")
|
84 |
+
return True
|
85 |
+
|
86 |
+
except Exception as e:
|
87 |
+
logger.error(f"Embedding generation test failed: {str(e)}")
|
88 |
+
return False
|
89 |
+
|
90 |
+
def test_search_functionality(bot):
|
91 |
+
"""Test search functionality"""
|
92 |
+
try:
|
93 |
+
test_queries = [
|
94 |
+
"What are the penalties for corruption?",
|
95 |
+
"Explain criminal conspiracy",
|
96 |
+
"What constitutes culpable homicide?"
|
97 |
+
]
|
98 |
+
|
99 |
+
logger.info("Testing search functionality...")
|
100 |
+
for query in tqdm(test_queries, desc="Testing searches"):
|
101 |
+
start_time = time.time()
|
102 |
+
|
103 |
+
# Test vector search
|
104 |
results = bot._search_astra(query)
|
105 |
|
106 |
+
# Log search performance
|
107 |
+
elapsed_time = time.time() - start_time
|
108 |
+
logger.info(f"Search time for '{query[:50]}...': {elapsed_time:.2f}s")
|
109 |
+
|
110 |
+
# Verify results
|
111 |
+
assert isinstance(results, list), "Search results should be a list"
|
112 |
if results:
|
113 |
+
logger.info(f"Found {len(results)} results for '{query[:50]}...'")
|
114 |
+
# Verify result structure
|
115 |
+
first_result = results[0]
|
116 |
+
required_fields = ["section_number", "title", "content"]
|
117 |
+
for field in required_fields:
|
118 |
+
assert field in first_result, f"Missing required field: {field}"
|
119 |
+
|
120 |
+
logger.info("✅ Search functionality tests passed")
|
121 |
return True
|
122 |
+
|
123 |
+
except Exception as e:
|
124 |
+
logger.error(f"Search functionality test failed: {str(e)}")
|
125 |
+
return False
|
126 |
+
|
127 |
+
def run_all_tests():
|
128 |
+
"""Run all tests"""
|
129 |
+
try:
|
130 |
+
logger.info("\n=== Starting Comprehensive Tests ===\n")
|
131 |
+
|
132 |
+
# Test 1: Environment
|
133 |
+
if not test_environment():
|
134 |
+
return False
|
135 |
|
136 |
+
# Test 2: Bot Initialization
|
137 |
+
bot = test_bot_initialization()
|
138 |
+
if not bot:
|
139 |
+
return False
|
140 |
+
|
141 |
+
# Test 3: Embedding Generation
|
142 |
+
if not test_embedding_generation(bot):
|
143 |
+
return False
|
144 |
+
|
145 |
+
# Test 4: Search Functionality
|
146 |
+
if not test_search_functionality(bot):
|
147 |
+
return False
|
148 |
+
|
149 |
+
logger.info("\n=== All Tests Completed Successfully ===\n")
|
150 |
+
return True
|
151 |
+
|
152 |
except Exception as e:
|
153 |
+
logger.error(f"Test suite failed: {str(e)}")
|
154 |
return False
|
155 |
|
156 |
if __name__ == "__main__":
|
157 |
+
success = run_all_tests()
|
|
|
158 |
if success:
|
159 |
+
print("\n✅ All tests passed successfully!")
|
160 |
else:
|
161 |
+
print("\n❌ Some tests failed. Check the logs for details.")
|