Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
from typing import List, Dict
|
3 |
from langchain_core.prompts import ChatPromptTemplate
|
4 |
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
5 |
from transformers import pipeline
|
@@ -7,6 +7,7 @@ import os
|
|
7 |
from astrapy.db import AstraDB
|
8 |
from dotenv import load_dotenv
|
9 |
from huggingface_hub import login
|
|
|
10 |
|
11 |
# Load environment variables
|
12 |
load_dotenv()
|
@@ -14,7 +15,7 @@ load_dotenv()
|
|
14 |
# Login to Hugging Face Hub
|
15 |
login(token=os.getenv("HUGGINGFACE_API_TOKEN"))
|
16 |
|
17 |
-
class
|
18 |
def __init__(self):
|
19 |
# Initialize AstraDB connection
|
20 |
self.astra_db = AstraDB(
|
@@ -25,7 +26,9 @@ class AstraDBChatbot:
|
|
25 |
# Set your collection
|
26 |
self.collection = self.astra_db.collection(os.getenv("ASTRA_DB_COLLECTION"))
|
27 |
|
28 |
-
# Initialize the
|
|
|
|
|
29 |
pipe = pipeline(
|
30 |
"text-generation",
|
31 |
model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
@@ -38,16 +41,17 @@ class AstraDBChatbot:
|
|
38 |
|
39 |
# Create prompt template
|
40 |
self.template = """
|
41 |
-
IMPORTANT: You are a
|
42 |
|
43 |
STRICT RULES:
|
44 |
-
1. Base your response ONLY on the provided
|
45 |
-
2. If you cannot find relevant information, respond with: "I apologize, but I cannot find information about that in the database."
|
46 |
3. Do not make assumptions or use external knowledge
|
47 |
-
4.
|
48 |
-
5.
|
|
|
49 |
|
50 |
-
Context: {context}
|
51 |
|
52 |
Chat History: {chat_history}
|
53 |
|
@@ -59,55 +63,138 @@ class AstraDBChatbot:
|
|
59 |
self.chat_history = ""
|
60 |
|
61 |
def _search_astra(self, query: str) -> List[Dict]:
|
62 |
-
"""Search AstraDB for relevant
|
63 |
try:
|
|
|
|
|
|
|
64 |
# Perform vector search in AstraDB
|
65 |
results = self.collection.vector_find(
|
66 |
-
|
67 |
-
limit=5
|
68 |
)
|
69 |
-
return results
|
70 |
except Exception as e:
|
71 |
print(f"Error searching AstraDB: {str(e)}")
|
72 |
return []
|
73 |
|
74 |
-
def
|
75 |
-
"""
|
76 |
try:
|
77 |
-
# Search AstraDB for relevant
|
78 |
search_results = self._search_astra(query)
|
79 |
|
80 |
if not search_results:
|
81 |
-
return "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
#
|
84 |
context = "\n\n".join([result.get('content', '') for result in search_results])
|
85 |
|
86 |
-
# Generate
|
87 |
chain = self.prompt | self.llm
|
88 |
-
|
89 |
"context": context,
|
90 |
"chat_history": self.chat_history,
|
91 |
"question": query
|
92 |
})
|
93 |
|
94 |
-
self.chat_history += f"\nUser: {query}\nAI: {
|
|
|
|
|
95 |
|
96 |
-
return result
|
97 |
except Exception as e:
|
98 |
-
return f"Error processing query: {str(e)}"
|
99 |
-
|
100 |
-
# Initialize the chatbot
|
101 |
-
chatbot = AstraDBChatbot()
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
-
#
|
113 |
-
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from typing import List, Dict, Tuple
|
3 |
from langchain_core.prompts import ChatPromptTemplate
|
4 |
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
5 |
from transformers import pipeline
|
|
|
7 |
from astrapy.db import AstraDB
|
8 |
from dotenv import load_dotenv
|
9 |
from huggingface_hub import login
|
10 |
+
from sentence_transformers import SentenceTransformer
|
11 |
|
12 |
# Load environment variables
|
13 |
load_dotenv()
|
|
|
15 |
# Login to Hugging Face Hub
|
16 |
login(token=os.getenv("HUGGINGFACE_API_TOKEN"))
|
17 |
|
18 |
+
class LegalTextSearchBot:
|
19 |
def __init__(self):
|
20 |
# Initialize AstraDB connection
|
21 |
self.astra_db = AstraDB(
|
|
|
26 |
# Set your collection
|
27 |
self.collection = self.astra_db.collection(os.getenv("ASTRA_DB_COLLECTION"))
|
28 |
|
29 |
+
# Initialize the models
|
30 |
+
self.embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
31 |
+
|
32 |
pipe = pipeline(
|
33 |
"text-generation",
|
34 |
model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
|
|
41 |
|
42 |
# Create prompt template
|
43 |
self.template = """
|
44 |
+
IMPORTANT: You are a legal assistant that provides accurate information based on the Indian legal sections provided in the context.
|
45 |
|
46 |
STRICT RULES:
|
47 |
+
1. Base your response ONLY on the provided legal sections
|
48 |
+
2. If you cannot find relevant information, respond with: "I apologize, but I cannot find information about that in the legal database."
|
49 |
3. Do not make assumptions or use external knowledge
|
50 |
+
4. Always cite the specific section numbers you're referring to
|
51 |
+
5. Be precise and accurate in your legal interpretations
|
52 |
+
6. If quoting from the sections, use quotes and cite the section number
|
53 |
|
54 |
+
Context (Legal Sections): {context}
|
55 |
|
56 |
Chat History: {chat_history}
|
57 |
|
|
|
63 |
self.chat_history = ""
|
64 |
|
65 |
def _search_astra(self, query: str) -> List[Dict]:
|
66 |
+
"""Search AstraDB for relevant legal sections"""
|
67 |
try:
|
68 |
+
# Generate embedding for the query
|
69 |
+
query_embedding = self.embedding_model.encode(query).tolist()
|
70 |
+
|
71 |
# Perform vector search in AstraDB
|
72 |
results = self.collection.vector_find(
|
73 |
+
query_embedding,
|
74 |
+
limit=5
|
75 |
)
|
76 |
+
return list(results)
|
77 |
except Exception as e:
|
78 |
print(f"Error searching AstraDB: {str(e)}")
|
79 |
return []
|
80 |
|
81 |
+
def search_sections(self, query: str) -> Tuple[str, str]:
|
82 |
+
"""Search legal sections and return both raw results and AI interpretation"""
|
83 |
try:
|
84 |
+
# Search AstraDB for relevant sections
|
85 |
search_results = self._search_astra(query)
|
86 |
|
87 |
if not search_results:
|
88 |
+
return "No relevant sections found.", ""
|
89 |
+
|
90 |
+
# Format raw results
|
91 |
+
raw_results = []
|
92 |
+
for result in search_results:
|
93 |
+
section_info = f"""
|
94 |
+
Section {result.get('section_number')}: {result.get('title')}
|
95 |
+
Chapter: {result.get('chapter_info', {}).get('title', 'N/A')}
|
96 |
+
|
97 |
+
Content:
|
98 |
+
{result.get('content', 'N/A')}
|
99 |
+
|
100 |
+
{"="*80}
|
101 |
+
"""
|
102 |
+
raw_results.append(section_info)
|
103 |
|
104 |
+
# Combine relevant content for AI interpretation
|
105 |
context = "\n\n".join([result.get('content', '') for result in search_results])
|
106 |
|
107 |
+
# Generate AI interpretation
|
108 |
chain = self.prompt | self.llm
|
109 |
+
ai_response = chain.invoke({
|
110 |
"context": context,
|
111 |
"chat_history": self.chat_history,
|
112 |
"question": query
|
113 |
})
|
114 |
|
115 |
+
self.chat_history += f"\nUser: {query}\nAI: {ai_response}\n"
|
116 |
+
|
117 |
+
return "\n".join(raw_results), ai_response
|
118 |
|
|
|
119 |
except Exception as e:
|
120 |
+
return f"Error processing query: {str(e)}", ""
|
|
|
|
|
|
|
121 |
|
122 |
+
def create_interface():
|
123 |
+
"""Create the Gradio interface"""
|
124 |
+
with gr.Blocks(title="Legal Text Search System", theme=gr.themes.Soft()) as iface:
|
125 |
+
gr.Markdown("""
|
126 |
+
# π Legal Text Search System
|
127 |
+
|
128 |
+
This system allows you to search through Indian legal sections and get both:
|
129 |
+
1. π Raw section contents that match your query
|
130 |
+
2. π€ AI-powered interpretation of the relevant sections
|
131 |
+
|
132 |
+
Enter your legal query below:
|
133 |
+
""")
|
134 |
+
|
135 |
+
# Initialize the search bot
|
136 |
+
search_bot = LegalTextSearchBot()
|
137 |
+
|
138 |
+
# Create input and output components
|
139 |
+
with gr.Row():
|
140 |
+
query_input = gr.Textbox(
|
141 |
+
label="Your Query",
|
142 |
+
placeholder="e.g., What are the penalties for public servants who conceal information?",
|
143 |
+
lines=2
|
144 |
+
)
|
145 |
+
|
146 |
+
with gr.Row():
|
147 |
+
search_button = gr.Button("π Search Legal Sections", variant="primary")
|
148 |
+
|
149 |
+
with gr.Row():
|
150 |
+
with gr.Column():
|
151 |
+
raw_output = gr.Textbox(
|
152 |
+
label="π Relevant Legal Sections",
|
153 |
+
lines=15,
|
154 |
+
max_lines=30
|
155 |
+
)
|
156 |
+
with gr.Column():
|
157 |
+
ai_output = gr.Textbox(
|
158 |
+
label="π€ AI Interpretation",
|
159 |
+
lines=15,
|
160 |
+
max_lines=30
|
161 |
+
)
|
162 |
+
|
163 |
+
# Add example queries
|
164 |
+
gr.Examples(
|
165 |
+
examples=[
|
166 |
+
"What are the penalties for public servants who conceal information?",
|
167 |
+
"What is the punishment for corruption?",
|
168 |
+
"What happens if a public servant fails to prevent an offense?",
|
169 |
+
"What are the legal consequences for concealing design to commit offence?",
|
170 |
+
"Explain the duties and responsibilities of public servants"
|
171 |
+
],
|
172 |
+
inputs=query_input,
|
173 |
+
label="Example Queries"
|
174 |
+
)
|
175 |
+
|
176 |
+
# Set up the search function
|
177 |
+
def search(query):
|
178 |
+
raw_results, ai_response = search_bot.search_sections(query)
|
179 |
+
return raw_results, ai_response
|
180 |
+
|
181 |
+
# Connect the button to the search function
|
182 |
+
search_button.click(
|
183 |
+
fn=search,
|
184 |
+
inputs=query_input,
|
185 |
+
outputs=[raw_output, ai_output]
|
186 |
+
)
|
187 |
+
|
188 |
+
# Also allow pressing Enter to search
|
189 |
+
query_input.submit(
|
190 |
+
fn=search,
|
191 |
+
inputs=query_input,
|
192 |
+
outputs=[raw_output, ai_output]
|
193 |
+
)
|
194 |
+
|
195 |
+
return iface
|
196 |
|
197 |
+
# Create and launch the interface
|
198 |
+
if __name__ == "__main__":
|
199 |
+
demo = create_interface()
|
200 |
+
demo.launch()
|