Spaces:
Sleeping
Sleeping
Delete add_embeddings.py
Browse files- add_embeddings.py +0 -84
add_embeddings.py
DELETED
@@ -1,84 +0,0 @@
|
|
1 |
-
import chromadb
|
2 |
-
from chromadb.utils import embedding_functions
|
3 |
-
from tqdm import tqdm
|
4 |
-
import os
|
5 |
-
from typing import List, Dict
|
6 |
-
|
7 |
-
class TextEmbedder:
|
8 |
-
def __init__(self, collection_name: str = "text_collection"):
|
9 |
-
# Initialize ChromaDB client
|
10 |
-
self.chroma_client = chromadb.Client()
|
11 |
-
|
12 |
-
# Initialize embedding function
|
13 |
-
self.embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(
|
14 |
-
model_name="all-MiniLM-L6-v2"
|
15 |
-
)
|
16 |
-
|
17 |
-
# Create collection
|
18 |
-
self.collection = self.chroma_client.create_collection(
|
19 |
-
name=collection_name,
|
20 |
-
embedding_function=self.embedding_function,
|
21 |
-
metadata={"hnsw:space": "cosine"}
|
22 |
-
)
|
23 |
-
|
24 |
-
def process_files(self, text_file: str, index_file: str, chunk_size: int = 512):
|
25 |
-
"""Process main text file and index file"""
|
26 |
-
try:
|
27 |
-
# Read main text file
|
28 |
-
print("Reading main text file...")
|
29 |
-
with open(text_file, 'r', encoding='utf-8') as f:
|
30 |
-
text_content = f.read()
|
31 |
-
|
32 |
-
# Read index file
|
33 |
-
print("Reading index file...")
|
34 |
-
with open(index_file, 'r', encoding='utf-8') as f:
|
35 |
-
index_lines = f.readlines()
|
36 |
-
|
37 |
-
# Create chunks from text content
|
38 |
-
chunks = []
|
39 |
-
for i in range(0, len(text_content), chunk_size):
|
40 |
-
chunk = text_content[i:i + chunk_size]
|
41 |
-
chunks.append(chunk)
|
42 |
-
|
43 |
-
print(f"Created {len(chunks)} chunks from text")
|
44 |
-
|
45 |
-
# Add documents to collection
|
46 |
-
print("Adding documents to ChromaDB...")
|
47 |
-
for i, chunk in enumerate(tqdm(chunks)):
|
48 |
-
# Get corresponding index line if available
|
49 |
-
index_text = index_lines[i].strip() if i < len(index_lines) else f"Chunk {i+1}"
|
50 |
-
|
51 |
-
self.collection.add(
|
52 |
-
documents=[chunk],
|
53 |
-
ids=[f"doc_{i}"],
|
54 |
-
metadatas=[{
|
55 |
-
"index": index_text,
|
56 |
-
"chunk_number": i,
|
57 |
-
"source": "a2023-45.txt"
|
58 |
-
}]
|
59 |
-
)
|
60 |
-
|
61 |
-
print("Successfully processed all documents!")
|
62 |
-
return True
|
63 |
-
|
64 |
-
except Exception as e:
|
65 |
-
print(f"Error processing files: {str(e)}")
|
66 |
-
return False
|
67 |
-
|
68 |
-
def main():
|
69 |
-
# Initialize embedder
|
70 |
-
embedder = TextEmbedder()
|
71 |
-
|
72 |
-
# Process files
|
73 |
-
success = embedder.process_files(
|
74 |
-
text_file='a2023-45.txt',
|
75 |
-
index_file='index.txt'
|
76 |
-
)
|
77 |
-
|
78 |
-
if success:
|
79 |
-
print("Embedding process completed successfully!")
|
80 |
-
else:
|
81 |
-
print("Embedding process failed!")
|
82 |
-
|
83 |
-
if __name__ == "__main__":
|
84 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|