veerukhannan commited on
Commit
5f5f8de
·
verified ·
1 Parent(s): 96c1db0

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +113 -0
app.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from typing import List, Dict
3
+ from langchain_core.prompts import ChatPromptTemplate
4
+ from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
5
+ from transformers import pipeline
6
+ import os
7
+ from astrapy.db import AstraDB
8
+ from dotenv import load_dotenv
9
+ from huggingface_hub import login
10
+
11
+ # Load environment variables
12
+ load_dotenv()
13
+
14
+ # Login to Hugging Face Hub
15
+ login(token=os.getenv("HUGGINGFACE_API_TOKEN"))
16
+
17
+ class AstraDBChatbot:
18
+ def __init__(self):
19
+ # Initialize AstraDB connection
20
+ self.astra_db = AstraDB(
21
+ token=os.getenv("ASTRA_DB_APPLICATION_TOKEN"),
22
+ api_endpoint=os.getenv("ASTRA_DB_API_ENDPOINT")
23
+ )
24
+
25
+ # Set your collection
26
+ self.collection = self.astra_db.collection(os.getenv("ASTRA_DB_COLLECTION"))
27
+
28
+ # Initialize the model - using a smaller model suitable for CPU
29
+ pipe = pipeline(
30
+ "text-generation",
31
+ model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
32
+ max_new_tokens=512,
33
+ temperature=0.7,
34
+ top_p=0.95,
35
+ repetition_penalty=1.15
36
+ )
37
+ self.llm = HuggingFacePipeline(pipeline=pipe)
38
+
39
+ # Create prompt template
40
+ self.template = """
41
+ IMPORTANT: You are a helpful assistant that provides information based on the retrieved context.
42
+
43
+ STRICT RULES:
44
+ 1. Base your response ONLY on the provided context
45
+ 2. If you cannot find relevant information, respond with: "I apologize, but I cannot find information about that in the database."
46
+ 3. Do not make assumptions or use external knowledge
47
+ 4. Be concise and accurate in your responses
48
+ 5. If quoting from the context, clearly indicate it
49
+
50
+ Context: {context}
51
+
52
+ Chat History: {chat_history}
53
+
54
+ Question: {question}
55
+
56
+ Answer:"""
57
+
58
+ self.prompt = ChatPromptTemplate.from_template(self.template)
59
+ self.chat_history = ""
60
+
61
+ def _search_astra(self, query: str) -> List[Dict]:
62
+ """Search AstraDB for relevant documents"""
63
+ try:
64
+ # Perform vector search in AstraDB
65
+ results = self.collection.vector_find(
66
+ query,
67
+ limit=5 # Adjust the limit based on your needs
68
+ )
69
+ return results
70
+ except Exception as e:
71
+ print(f"Error searching AstraDB: {str(e)}")
72
+ return []
73
+
74
+ def chat(self, query: str, history) -> str:
75
+ """Process a query and return a response"""
76
+ try:
77
+ # Search AstraDB for relevant content
78
+ search_results = self._search_astra(query)
79
+
80
+ if not search_results:
81
+ return "I apologize, but I cannot find information about that in the database."
82
+
83
+ # Extract and combine relevant content from search results
84
+ context = "\n\n".join([result.get('content', '') for result in search_results])
85
+
86
+ # Generate response using LLM
87
+ chain = self.prompt | self.llm
88
+ result = chain.invoke({
89
+ "context": context,
90
+ "chat_history": self.chat_history,
91
+ "question": query
92
+ })
93
+
94
+ self.chat_history += f"\nUser: {query}\nAI: {result}\n"
95
+
96
+ return result
97
+ except Exception as e:
98
+ return f"Error processing query: {str(e)}"
99
+
100
+ # Initialize the chatbot
101
+ chatbot = AstraDBChatbot()
102
+
103
+ # Create the Gradio interface
104
+ iface = gr.ChatInterface(
105
+ chatbot.chat,
106
+ title="AstraDB-powered Q&A Chatbot",
107
+ description="Ask questions and get answers from your AstraDB database.",
108
+ examples=["What information do you have about this topic?", "Can you tell me more about specific details?"],
109
+ theme=gr.themes.Soft()
110
+ )
111
+
112
+ # Launch the interface
113
+ iface.launch()