Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from typing import List, Dict
|
3 |
+
from langchain_core.prompts import ChatPromptTemplate
|
4 |
+
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
5 |
+
from transformers import pipeline
|
6 |
+
import os
|
7 |
+
from astrapy.db import AstraDB
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
from huggingface_hub import login
|
10 |
+
|
11 |
+
# Load environment variables
|
12 |
+
load_dotenv()
|
13 |
+
|
14 |
+
# Login to Hugging Face Hub
|
15 |
+
login(token=os.getenv("HUGGINGFACE_API_TOKEN"))
|
16 |
+
|
17 |
+
class AstraDBChatbot:
|
18 |
+
def __init__(self):
|
19 |
+
# Initialize AstraDB connection
|
20 |
+
self.astra_db = AstraDB(
|
21 |
+
token=os.getenv("ASTRA_DB_APPLICATION_TOKEN"),
|
22 |
+
api_endpoint=os.getenv("ASTRA_DB_API_ENDPOINT")
|
23 |
+
)
|
24 |
+
|
25 |
+
# Set your collection
|
26 |
+
self.collection = self.astra_db.collection(os.getenv("ASTRA_DB_COLLECTION"))
|
27 |
+
|
28 |
+
# Initialize the model - using a smaller model suitable for CPU
|
29 |
+
pipe = pipeline(
|
30 |
+
"text-generation",
|
31 |
+
model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
32 |
+
max_new_tokens=512,
|
33 |
+
temperature=0.7,
|
34 |
+
top_p=0.95,
|
35 |
+
repetition_penalty=1.15
|
36 |
+
)
|
37 |
+
self.llm = HuggingFacePipeline(pipeline=pipe)
|
38 |
+
|
39 |
+
# Create prompt template
|
40 |
+
self.template = """
|
41 |
+
IMPORTANT: You are a helpful assistant that provides information based on the retrieved context.
|
42 |
+
|
43 |
+
STRICT RULES:
|
44 |
+
1. Base your response ONLY on the provided context
|
45 |
+
2. If you cannot find relevant information, respond with: "I apologize, but I cannot find information about that in the database."
|
46 |
+
3. Do not make assumptions or use external knowledge
|
47 |
+
4. Be concise and accurate in your responses
|
48 |
+
5. If quoting from the context, clearly indicate it
|
49 |
+
|
50 |
+
Context: {context}
|
51 |
+
|
52 |
+
Chat History: {chat_history}
|
53 |
+
|
54 |
+
Question: {question}
|
55 |
+
|
56 |
+
Answer:"""
|
57 |
+
|
58 |
+
self.prompt = ChatPromptTemplate.from_template(self.template)
|
59 |
+
self.chat_history = ""
|
60 |
+
|
61 |
+
def _search_astra(self, query: str) -> List[Dict]:
|
62 |
+
"""Search AstraDB for relevant documents"""
|
63 |
+
try:
|
64 |
+
# Perform vector search in AstraDB
|
65 |
+
results = self.collection.vector_find(
|
66 |
+
query,
|
67 |
+
limit=5 # Adjust the limit based on your needs
|
68 |
+
)
|
69 |
+
return results
|
70 |
+
except Exception as e:
|
71 |
+
print(f"Error searching AstraDB: {str(e)}")
|
72 |
+
return []
|
73 |
+
|
74 |
+
def chat(self, query: str, history) -> str:
|
75 |
+
"""Process a query and return a response"""
|
76 |
+
try:
|
77 |
+
# Search AstraDB for relevant content
|
78 |
+
search_results = self._search_astra(query)
|
79 |
+
|
80 |
+
if not search_results:
|
81 |
+
return "I apologize, but I cannot find information about that in the database."
|
82 |
+
|
83 |
+
# Extract and combine relevant content from search results
|
84 |
+
context = "\n\n".join([result.get('content', '') for result in search_results])
|
85 |
+
|
86 |
+
# Generate response using LLM
|
87 |
+
chain = self.prompt | self.llm
|
88 |
+
result = chain.invoke({
|
89 |
+
"context": context,
|
90 |
+
"chat_history": self.chat_history,
|
91 |
+
"question": query
|
92 |
+
})
|
93 |
+
|
94 |
+
self.chat_history += f"\nUser: {query}\nAI: {result}\n"
|
95 |
+
|
96 |
+
return result
|
97 |
+
except Exception as e:
|
98 |
+
return f"Error processing query: {str(e)}"
|
99 |
+
|
100 |
+
# Initialize the chatbot
|
101 |
+
chatbot = AstraDBChatbot()
|
102 |
+
|
103 |
+
# Create the Gradio interface
|
104 |
+
iface = gr.ChatInterface(
|
105 |
+
chatbot.chat,
|
106 |
+
title="AstraDB-powered Q&A Chatbot",
|
107 |
+
description="Ask questions and get answers from your AstraDB database.",
|
108 |
+
examples=["What information do you have about this topic?", "Can you tell me more about specific details?"],
|
109 |
+
theme=gr.themes.Soft()
|
110 |
+
)
|
111 |
+
|
112 |
+
# Launch the interface
|
113 |
+
iface.launch()
|