Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,176 +2,243 @@ import gradio as gr
|
|
2 |
from typing import List, Dict
|
3 |
from langchain_core.prompts import ChatPromptTemplate
|
4 |
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
5 |
-
from
|
|
|
|
|
|
|
6 |
import chromadb
|
7 |
from chromadb.utils import embedding_functions
|
8 |
-
|
|
|
9 |
import os
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
12 |
def __init__(self):
|
13 |
-
# Initialize
|
14 |
self.chroma_client = chromadb.Client()
|
15 |
|
16 |
-
# Initialize embedding
|
17 |
self.embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(
|
18 |
model_name="all-MiniLM-L6-v2"
|
19 |
)
|
20 |
|
21 |
-
# Create
|
22 |
self.collection = self.chroma_client.create_collection(
|
23 |
name="text_collection",
|
24 |
-
embedding_function=self.embedding_function
|
|
|
25 |
)
|
26 |
|
27 |
-
# Initialize the
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
pipe = pipeline(
|
29 |
"text-generation",
|
30 |
-
model=
|
|
|
31 |
max_new_tokens=512,
|
32 |
temperature=0.7,
|
33 |
top_p=0.95,
|
34 |
-
repetition_penalty=1.15
|
|
|
35 |
)
|
|
|
36 |
self.llm = HuggingFacePipeline(pipeline=pipe)
|
37 |
|
38 |
-
# Enhanced prompt templates
|
39 |
self.templates = {
|
40 |
"default": """
|
41 |
-
|
42 |
|
43 |
-
|
44 |
-
1.
|
45 |
-
2. If
|
46 |
-
3.
|
47 |
-
4.
|
48 |
-
5. If quoting
|
49 |
|
50 |
Context: {context}
|
51 |
Chat History: {chat_history}
|
52 |
Question: {question}
|
53 |
|
54 |
-
|
55 |
|
56 |
"summary": """
|
57 |
-
Create a
|
58 |
|
59 |
Context: {context}
|
60 |
|
61 |
-
|
62 |
-
1.
|
63 |
-
2.
|
64 |
-
3.
|
65 |
-
4.
|
66 |
|
67 |
Summary:""",
|
68 |
|
69 |
"technical": """
|
70 |
-
Provide a technical
|
71 |
|
72 |
Context: {context}
|
73 |
Question: {question}
|
74 |
|
75 |
-
|
76 |
-
1. Focus on technical
|
77 |
2. Explain complex concepts clearly
|
78 |
3. Use appropriate technical terminology
|
79 |
-
4.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
|
82 |
}
|
83 |
|
84 |
-
self.chat_history =
|
85 |
self.loaded = False
|
86 |
|
87 |
-
def load_data(self, file_path: str):
|
88 |
-
"""Load data
|
89 |
if self.loaded:
|
90 |
-
return
|
91 |
|
92 |
try:
|
93 |
# Read the text file
|
94 |
with open(file_path, 'r', encoding='utf-8') as f:
|
95 |
content = f.read()
|
96 |
|
97 |
-
#
|
98 |
-
chunk_size = 512
|
99 |
-
overlap = 50
|
100 |
chunks = []
|
101 |
-
|
102 |
for i in range(0, len(content), chunk_size - overlap):
|
103 |
chunk = content[i:i + chunk_size]
|
104 |
chunks.append(chunk)
|
105 |
|
106 |
-
# Add documents to collection
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
111 |
|
112 |
self.loaded = True
|
113 |
-
|
114 |
|
115 |
except Exception as e:
|
116 |
print(f"Error loading data: {str(e)}")
|
117 |
return False
|
118 |
|
119 |
-
def
|
120 |
-
"""Search
|
121 |
try:
|
122 |
results = self.collection.query(
|
123 |
query_texts=[query],
|
124 |
-
n_results=
|
|
|
125 |
)
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
except Exception as e:
|
128 |
-
print(f"
|
129 |
return []
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
def chat(self, query: str, history) -> str:
|
132 |
-
"""Process
|
133 |
try:
|
134 |
if not self.loaded:
|
135 |
-
self.load_data('a2023-45.txt')
|
|
|
136 |
|
137 |
-
#
|
138 |
-
|
139 |
-
if any(word in query.lower() for word in ["summarize", "summary"]):
|
140 |
-
template_type = "summary"
|
141 |
-
elif any(word in query.lower() for word in ["technical", "explain", "how does"]):
|
142 |
-
template_type = "technical"
|
143 |
-
|
144 |
-
# Search ChromaDB for relevant content
|
145 |
-
search_results = self._search_chroma(query)
|
146 |
|
147 |
if not search_results:
|
148 |
-
return "I apologize, but I
|
149 |
|
150 |
-
#
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
-
#
|
|
|
154 |
prompt = ChatPromptTemplate.from_template(self.templates[template_type])
|
155 |
|
156 |
-
# Generate response
|
157 |
chain = prompt | self.llm
|
158 |
-
|
159 |
"context": context,
|
160 |
-
"chat_history": self.chat_history,
|
161 |
"question": query
|
162 |
})
|
163 |
|
164 |
# Update chat history
|
165 |
-
self.chat_history
|
|
|
|
|
|
|
166 |
|
167 |
-
return result
|
168 |
except Exception as e:
|
169 |
return f"Error processing query: {str(e)}"
|
170 |
|
171 |
-
# Initialize
|
172 |
-
chatbot =
|
173 |
|
174 |
-
# Create
|
175 |
demo = gr.Interface(
|
176 |
fn=chatbot.chat,
|
177 |
inputs=[
|
@@ -183,17 +250,23 @@ demo = gr.Interface(
|
|
183 |
gr.State([]) # For chat history
|
184 |
],
|
185 |
outputs=gr.Textbox(label="Answer", lines=10),
|
186 |
-
title="
|
187 |
description="""
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
-
|
|
|
|
|
|
|
|
|
|
|
192 |
""",
|
193 |
examples=[
|
194 |
-
["Can you summarize the main points?"],
|
195 |
-
["What are the technical details about
|
196 |
-
["
|
|
|
197 |
],
|
198 |
theme=gr.themes.Soft()
|
199 |
)
|
|
|
2 |
from typing import List, Dict
|
3 |
from langchain_core.prompts import ChatPromptTemplate
|
4 |
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
5 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
6 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
7 |
+
import torch
|
8 |
+
from sentence_transformers import SentenceTransformer
|
9 |
import chromadb
|
10 |
from chromadb.utils import embedding_functions
|
11 |
+
import numpy as np
|
12 |
+
from tqdm import tqdm
|
13 |
import os
|
14 |
+
from huggingface_hub import login
|
15 |
+
from dotenv import load_dotenv
|
16 |
+
|
17 |
+
# Load environment variables
|
18 |
+
load_dotenv()
|
19 |
|
20 |
+
# Login to Hugging Face Hub if token is available
|
21 |
+
if os.getenv("HUGGINGFACE_API_TOKEN"):
|
22 |
+
login(token=os.getenv("HUGGINGFACE_API_TOKEN"))
|
23 |
+
|
24 |
+
class EnhancedChatbot:
|
25 |
def __init__(self):
|
26 |
+
# Initialize ChromaDB
|
27 |
self.chroma_client = chromadb.Client()
|
28 |
|
29 |
+
# Initialize embedding model using sentence-transformers
|
30 |
self.embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(
|
31 |
model_name="all-MiniLM-L6-v2"
|
32 |
)
|
33 |
|
34 |
+
# Create collection with cosine similarity
|
35 |
self.collection = self.chroma_client.create_collection(
|
36 |
name="text_collection",
|
37 |
+
embedding_function=self.embedding_function,
|
38 |
+
metadata={"hnsw:space": "cosine"}
|
39 |
)
|
40 |
|
41 |
+
# Initialize the LLM with 8-bit quantization for efficiency
|
42 |
+
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
44 |
+
model = AutoModelForCausalLM.from_pretrained(
|
45 |
+
model_name,
|
46 |
+
load_in_8bit=True,
|
47 |
+
device_map="auto",
|
48 |
+
torch_dtype=torch.float16
|
49 |
+
)
|
50 |
+
|
51 |
pipe = pipeline(
|
52 |
"text-generation",
|
53 |
+
model=model,
|
54 |
+
tokenizer=tokenizer,
|
55 |
max_new_tokens=512,
|
56 |
temperature=0.7,
|
57 |
top_p=0.95,
|
58 |
+
repetition_penalty=1.15,
|
59 |
+
do_sample=True
|
60 |
)
|
61 |
+
|
62 |
self.llm = HuggingFacePipeline(pipeline=pipe)
|
63 |
|
64 |
+
# Enhanced prompt templates with specific use cases
|
65 |
self.templates = {
|
66 |
"default": """
|
67 |
+
You are a knowledgeable assistant providing accurate information based on the given context.
|
68 |
|
69 |
+
GUIDELINES:
|
70 |
+
1. Use ONLY the provided context
|
71 |
+
2. If information is not in context, say "I don't have enough information"
|
72 |
+
3. Be concise and clear
|
73 |
+
4. Use markdown formatting for better readability
|
74 |
+
5. If quoting, use proper citation format
|
75 |
|
76 |
Context: {context}
|
77 |
Chat History: {chat_history}
|
78 |
Question: {question}
|
79 |
|
80 |
+
Response:""",
|
81 |
|
82 |
"summary": """
|
83 |
+
Create a comprehensive summary of the provided context.
|
84 |
|
85 |
Context: {context}
|
86 |
|
87 |
+
REQUIREMENTS:
|
88 |
+
1. Structure the summary with clear headings
|
89 |
+
2. Use bullet points for key information
|
90 |
+
3. Highlight important concepts
|
91 |
+
4. Maintain factual accuracy
|
92 |
|
93 |
Summary:""",
|
94 |
|
95 |
"technical": """
|
96 |
+
Provide a detailed technical analysis of the context.
|
97 |
|
98 |
Context: {context}
|
99 |
Question: {question}
|
100 |
|
101 |
+
GUIDELINES:
|
102 |
+
1. Focus on technical specifications
|
103 |
2. Explain complex concepts clearly
|
104 |
3. Use appropriate technical terminology
|
105 |
+
4. Include relevant examples from context
|
106 |
+
5. Structure the response logically
|
107 |
+
|
108 |
+
Technical Analysis:""",
|
109 |
+
|
110 |
+
"comparative": """
|
111 |
+
Compare and analyze different aspects from the context.
|
112 |
+
|
113 |
+
Context: {context}
|
114 |
+
Question: {question}
|
115 |
+
|
116 |
+
APPROACH:
|
117 |
+
1. Identify key points for comparison
|
118 |
+
2. Analyze similarities and differences
|
119 |
+
3. Present balanced viewpoints
|
120 |
+
4. Use tables or lists for clarity
|
121 |
|
122 |
+
Comparison:"""
|
123 |
}
|
124 |
|
125 |
+
self.chat_history = []
|
126 |
self.loaded = False
|
127 |
|
128 |
+
def load_data(self, file_path: str, chunk_size: int = 512, overlap: int = 50):
|
129 |
+
"""Load and index data with progress bar"""
|
130 |
if self.loaded:
|
131 |
+
return True
|
132 |
|
133 |
try:
|
134 |
# Read the text file
|
135 |
with open(file_path, 'r', encoding='utf-8') as f:
|
136 |
content = f.read()
|
137 |
|
138 |
+
# Create chunks with overlap
|
|
|
|
|
139 |
chunks = []
|
|
|
140 |
for i in range(0, len(content), chunk_size - overlap):
|
141 |
chunk = content[i:i + chunk_size]
|
142 |
chunks.append(chunk)
|
143 |
|
144 |
+
# Add documents to collection with progress bar
|
145 |
+
for i, chunk in tqdm(enumerate(chunks), desc="Loading chunks", total=len(chunks)):
|
146 |
+
self.collection.add(
|
147 |
+
documents=[chunk],
|
148 |
+
ids=[f"chunk_{i}"],
|
149 |
+
metadatas=[{"source": file_path, "chunk_id": i}]
|
150 |
+
)
|
151 |
|
152 |
self.loaded = True
|
153 |
+
return True
|
154 |
|
155 |
except Exception as e:
|
156 |
print(f"Error loading data: {str(e)}")
|
157 |
return False
|
158 |
|
159 |
+
def _search_documents(self, query: str, n_results: int = 5) -> List[Dict]:
|
160 |
+
"""Search for relevant documents"""
|
161 |
try:
|
162 |
results = self.collection.query(
|
163 |
query_texts=[query],
|
164 |
+
n_results=n_results,
|
165 |
+
include=["documents", "metadatas", "distances"]
|
166 |
)
|
167 |
+
|
168 |
+
return [
|
169 |
+
{
|
170 |
+
"content": doc,
|
171 |
+
"metadata": meta,
|
172 |
+
"similarity": 1 - dist # Convert distance to similarity
|
173 |
+
}
|
174 |
+
for doc, meta, dist in zip(
|
175 |
+
results['documents'][0],
|
176 |
+
results['metadatas'][0],
|
177 |
+
results['distances'][0]
|
178 |
+
)
|
179 |
+
]
|
180 |
except Exception as e:
|
181 |
+
print(f"Search error: {str(e)}")
|
182 |
return []
|
183 |
|
184 |
+
def _select_template(self, query: str) -> str:
|
185 |
+
"""Select appropriate template based on query content"""
|
186 |
+
query_lower = query.lower()
|
187 |
+
|
188 |
+
if any(word in query_lower for word in ["summarize", "summary", "overview"]):
|
189 |
+
return "summary"
|
190 |
+
elif any(word in query_lower for word in ["technical", "explain how", "how does"]):
|
191 |
+
return "technical"
|
192 |
+
elif any(word in query_lower for word in ["compare", "difference", "versus", "vs"]):
|
193 |
+
return "comparative"
|
194 |
+
return "default"
|
195 |
+
|
196 |
def chat(self, query: str, history) -> str:
|
197 |
+
"""Process query and generate response"""
|
198 |
try:
|
199 |
if not self.loaded:
|
200 |
+
if not self.load_data('a2023-45.txt'):
|
201 |
+
return "Error: Failed to load document data."
|
202 |
|
203 |
+
# Search for relevant content
|
204 |
+
search_results = self._search_documents(query)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
if not search_results:
|
207 |
+
return "I apologize, but I couldn't find relevant information in the database."
|
208 |
|
209 |
+
# Prepare context with similarity scores
|
210 |
+
context_parts = []
|
211 |
+
for result in search_results:
|
212 |
+
context_parts.append(
|
213 |
+
f"[Similarity: {result['similarity']:.2f}]\n{result['content']}"
|
214 |
+
)
|
215 |
+
context = "\n\n".join(context_parts)
|
216 |
|
217 |
+
# Select and use appropriate template
|
218 |
+
template_type = self._select_template(query)
|
219 |
prompt = ChatPromptTemplate.from_template(self.templates[template_type])
|
220 |
|
221 |
+
# Generate response
|
222 |
chain = prompt | self.llm
|
223 |
+
response = chain.invoke({
|
224 |
"context": context,
|
225 |
+
"chat_history": "\n".join([f"{h[0]}: {h[1]}" for h in self.chat_history[-3:]]),
|
226 |
"question": query
|
227 |
})
|
228 |
|
229 |
# Update chat history
|
230 |
+
self.chat_history.append(("User", query))
|
231 |
+
self.chat_history.append(("Assistant", response))
|
232 |
+
|
233 |
+
return response
|
234 |
|
|
|
235 |
except Exception as e:
|
236 |
return f"Error processing query: {str(e)}"
|
237 |
|
238 |
+
# Initialize chatbot
|
239 |
+
chatbot = EnhancedChatbot()
|
240 |
|
241 |
+
# Create Gradio interface
|
242 |
demo = gr.Interface(
|
243 |
fn=chatbot.chat,
|
244 |
inputs=[
|
|
|
250 |
gr.State([]) # For chat history
|
251 |
],
|
252 |
outputs=gr.Textbox(label="Answer", lines=10),
|
253 |
+
title="π€ Enhanced Document Q&A System",
|
254 |
description="""
|
255 |
+
### Advanced Document Question-Answering System
|
256 |
+
|
257 |
+
**Available Query Types:**
|
258 |
+
- π **General Questions**: Just ask normally
|
259 |
+
- π **Summaries**: Include words like "summarize" or "overview"
|
260 |
+
- π§ **Technical Details**: Use words like "technical" or "explain how"
|
261 |
+
- π **Comparisons**: Ask to "compare" or use "versus"
|
262 |
+
|
263 |
+
*The system will automatically select the best response format based on your question.*
|
264 |
""",
|
265 |
examples=[
|
266 |
+
["Can you summarize the main points of the document?"],
|
267 |
+
["What are the technical details about the implementation?"],
|
268 |
+
["Compare the different approaches mentioned in the text."],
|
269 |
+
["What are the key concepts discussed?"]
|
270 |
],
|
271 |
theme=gr.themes.Soft()
|
272 |
)
|