Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
|
|
2 |
from typing import List, Dict, Tuple
|
3 |
from langchain_core.prompts import ChatPromptTemplate
|
4 |
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
5 |
-
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
6 |
import torch
|
7 |
import os
|
8 |
from astrapy.db import AstraDB
|
@@ -11,6 +11,7 @@ from huggingface_hub import login
|
|
11 |
import time
|
12 |
import logging
|
13 |
from functools import lru_cache
|
|
|
14 |
|
15 |
# Configure logging
|
16 |
logging.basicConfig(
|
@@ -23,25 +24,26 @@ logger = logging.getLogger(__name__)
|
|
23 |
load_dotenv()
|
24 |
login(token=os.getenv("HUGGINGFACE_API_TOKEN"))
|
25 |
|
26 |
-
# Initialize model with CPU-compatible settings
|
27 |
-
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
28 |
-
model = AutoModelForCausalLM.from_pretrained(
|
29 |
-
model_name,
|
30 |
-
device_map="auto",
|
31 |
-
torch_dtype=torch.float32, # Use float32 for CPU compatibility
|
32 |
-
)
|
33 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
34 |
-
|
35 |
class LegalTextSearchBot:
|
36 |
def __init__(self):
|
37 |
try:
|
|
|
38 |
self.astra_db = AstraDB(
|
39 |
token=os.getenv("ASTRA_DB_APPLICATION_TOKEN"),
|
40 |
api_endpoint=os.getenv("ASTRA_DB_API_ENDPOINT")
|
41 |
)
|
42 |
-
self.collection = self.astra_db.collection("
|
43 |
|
44 |
-
# Initialize
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
pipe = pipeline(
|
46 |
"text-generation",
|
47 |
model=model,
|
@@ -54,6 +56,14 @@ class LegalTextSearchBot:
|
|
54 |
)
|
55 |
self.llm = HuggingFacePipeline(pipeline=pipe)
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
self.template = """
|
58 |
IMPORTANT: You are a legal assistant that provides accurate information based on the Indian legal sections provided in the context.
|
59 |
|
@@ -81,17 +91,45 @@ class LegalTextSearchBot:
|
|
81 |
logger.error(f"Error initializing LegalTextSearchBot: {str(e)}")
|
82 |
raise
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
@lru_cache(maxsize=100)
|
85 |
def _cached_search(self, query: str) -> tuple:
|
86 |
-
"""Cached version of vector search
|
87 |
try:
|
|
|
|
|
|
|
88 |
results = list(self.collection.vector_find(
|
89 |
-
|
90 |
limit=5,
|
91 |
fields=["section_number", "title", "chapter_number", "chapter_title",
|
92 |
"content", "type", "metadata"]
|
93 |
))
|
94 |
-
return tuple(results)
|
95 |
except Exception as e:
|
96 |
logger.error(f"Error in vector search: {str(e)}")
|
97 |
return tuple()
|
|
|
2 |
from typing import List, Dict, Tuple
|
3 |
from langchain_core.prompts import ChatPromptTemplate
|
4 |
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
5 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel
|
6 |
import torch
|
7 |
import os
|
8 |
from astrapy.db import AstraDB
|
|
|
11 |
import time
|
12 |
import logging
|
13 |
from functools import lru_cache
|
14 |
+
import numpy as np
|
15 |
|
16 |
# Configure logging
|
17 |
logging.basicConfig(
|
|
|
24 |
load_dotenv()
|
25 |
login(token=os.getenv("HUGGINGFACE_API_TOKEN"))
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
class LegalTextSearchBot:
|
28 |
def __init__(self):
|
29 |
try:
|
30 |
+
# Initialize AstraDB connection
|
31 |
self.astra_db = AstraDB(
|
32 |
token=os.getenv("ASTRA_DB_APPLICATION_TOKEN"),
|
33 |
api_endpoint=os.getenv("ASTRA_DB_API_ENDPOINT")
|
34 |
)
|
35 |
+
self.collection = self.astra_db.collection(os.getenv("ASTRA_DB_COLLECTION"))
|
36 |
|
37 |
+
# Initialize language model for text generation
|
38 |
+
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
39 |
+
model = AutoModelForCausalLM.from_pretrained(
|
40 |
+
model_name,
|
41 |
+
device_map="auto",
|
42 |
+
torch_dtype=torch.float32,
|
43 |
+
)
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
45 |
+
|
46 |
+
# Initialize text generation pipeline
|
47 |
pipe = pipeline(
|
48 |
"text-generation",
|
49 |
model=model,
|
|
|
56 |
)
|
57 |
self.llm = HuggingFacePipeline(pipeline=pipe)
|
58 |
|
59 |
+
# Initialize embedding model
|
60 |
+
self.embedding_model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
61 |
+
self.embedding_pipeline = pipeline(
|
62 |
+
"feature-extraction",
|
63 |
+
model=self.embedding_model_name,
|
64 |
+
device_map="auto"
|
65 |
+
)
|
66 |
+
|
67 |
self.template = """
|
68 |
IMPORTANT: You are a legal assistant that provides accurate information based on the Indian legal sections provided in the context.
|
69 |
|
|
|
91 |
logger.error(f"Error initializing LegalTextSearchBot: {str(e)}")
|
92 |
raise
|
93 |
|
94 |
+
def get_embedding(self, text: str) -> List[float]:
|
95 |
+
"""Generate embedding vector for text"""
|
96 |
+
try:
|
97 |
+
# Clean and prepare text
|
98 |
+
text = text.replace('\n', ' ').strip()
|
99 |
+
|
100 |
+
# Generate embedding
|
101 |
+
outputs = self.embedding_pipeline(text)
|
102 |
+
embeddings = torch.mean(torch.tensor(outputs[0]), dim=0)
|
103 |
+
|
104 |
+
# Convert to list and ensure correct dimension
|
105 |
+
embedding_list = embeddings.tolist()
|
106 |
+
|
107 |
+
# Pad or truncate to exactly 1024 dimensions
|
108 |
+
if len(embedding_list) < 1024:
|
109 |
+
embedding_list.extend([0.0] * (1024 - len(embedding_list)))
|
110 |
+
elif len(embedding_list) > 1024:
|
111 |
+
embedding_list = embedding_list[:1024]
|
112 |
+
|
113 |
+
return embedding_list
|
114 |
+
|
115 |
+
except Exception as e:
|
116 |
+
logger.error(f"Error generating embedding: {str(e)}")
|
117 |
+
raise
|
118 |
+
|
119 |
@lru_cache(maxsize=100)
|
120 |
def _cached_search(self, query: str) -> tuple:
|
121 |
+
"""Cached version of vector search"""
|
122 |
try:
|
123 |
+
# Generate embedding for query
|
124 |
+
query_embedding = self.get_embedding(query)
|
125 |
+
|
126 |
results = list(self.collection.vector_find(
|
127 |
+
query_embedding,
|
128 |
limit=5,
|
129 |
fields=["section_number", "title", "chapter_number", "chapter_title",
|
130 |
"content", "type", "metadata"]
|
131 |
))
|
132 |
+
return tuple(results)
|
133 |
except Exception as e:
|
134 |
logger.error(f"Error in vector search: {str(e)}")
|
135 |
return tuple()
|