File size: 30,685 Bytes
205a7af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 |
"""Implementation of the pinhole, simple radial, and simple divisional camera models."""
from abc import abstractmethod
from typing import Dict, Optional, Tuple, Union
import torch
from torch.func import jacfwd, vmap
from torch.nn import functional as F
from geocalib.gravity import Gravity
from geocalib.misc import TensorWrapper, autocast
from geocalib.utils import deg2rad, focal2fov, fov2focal, rad2rotmat
# flake8: noqa: E741
# mypy: ignore-errors
class BaseCamera(TensorWrapper):
"""Camera tensor class."""
eps = 1e-3
@autocast
def __init__(self, data: torch.Tensor):
"""Camera parameters with shape (..., {w, h, fx, fy, cx, cy, *dist}).
Tensor convention: (..., {w, h, fx, fy, cx, cy, pitch, roll, *dist}) where
- w, h: image size in pixels
- fx, fy: focal lengths in pixels
- cx, cy: principal points in normalized image coordinates
- dist: distortion parameters
Args:
data (torch.Tensor): Camera parameters with shape (..., {6, 7, 8}).
"""
# w, h, fx, fy, cx, cy, dist
assert data.shape[-1] in {6, 7, 8}, data.shape
pad = data.new_zeros(data.shape[:-1] + (8 - data.shape[-1],))
data = torch.cat([data, pad], -1) if data.shape[-1] != 8 else data
super().__init__(data)
@classmethod
def from_dict(cls, param_dict: Dict[str, torch.Tensor]) -> "BaseCamera":
"""Create a Camera object from a dictionary of parameters.
Args:
param_dict (Dict[str, torch.Tensor]): Dictionary of parameters.
Returns:
Camera: Camera object.
"""
for key, value in param_dict.items():
if not isinstance(value, torch.Tensor):
param_dict[key] = torch.tensor(value)
h, w = param_dict["height"], param_dict["width"]
cx, cy = param_dict.get("cx", w / 2), param_dict.get("cy", h / 2)
if "f" in param_dict:
f = param_dict["f"]
elif "vfov" in param_dict:
vfov = param_dict["vfov"]
f = fov2focal(vfov, h)
else:
raise ValueError("Focal length or vertical field of view must be provided.")
if "dist" in param_dict:
k1, k2 = param_dict["dist"][..., 0], param_dict["dist"][..., 1]
elif "k1_hat" in param_dict:
k1 = param_dict["k1_hat"] * (f / h) ** 2
k2 = param_dict.get("k2", torch.zeros_like(k1))
else:
k1 = param_dict.get("k1", torch.zeros_like(f))
k2 = param_dict.get("k2", torch.zeros_like(f))
fx, fy = f, f
if "scales" in param_dict:
fx = fx * param_dict["scales"][..., 0] / param_dict["scales"][..., 1]
params = torch.stack([w, h, fx, fy, cx, cy, k1, k2], dim=-1)
return cls(params)
def pinhole(self):
"""Return the pinhole camera model."""
return self.__class__(self._data[..., :6])
@property
def size(self) -> torch.Tensor:
"""Size (width height) of the images, with shape (..., 2)."""
return self._data[..., :2]
@property
def f(self) -> torch.Tensor:
"""Focal lengths (fx, fy) with shape (..., 2)."""
return self._data[..., 2:4]
@property
def vfov(self) -> torch.Tensor:
"""Vertical field of view in radians."""
return focal2fov(self.f[..., 1], self.size[..., 1])
@property
def hfov(self) -> torch.Tensor:
"""Horizontal field of view in radians."""
return focal2fov(self.f[..., 0], self.size[..., 0])
@property
def c(self) -> torch.Tensor:
"""Principal points (cx, cy) with shape (..., 2)."""
return self._data[..., 4:6]
@property
def K(self) -> torch.Tensor:
"""Returns the self intrinsic matrix with shape (..., 3, 3)."""
shape = self.shape + (3, 3)
K = self._data.new_zeros(shape)
K[..., 0, 0] = self.f[..., 0]
K[..., 1, 1] = self.f[..., 1]
K[..., 0, 2] = self.c[..., 0]
K[..., 1, 2] = self.c[..., 1]
K[..., 2, 2] = 1
return K
def update_focal(self, delta: torch.Tensor, as_log: bool = False):
"""Update the self parameters after changing the focal length."""
f = torch.exp(torch.log(self.f) + delta) if as_log else self.f + delta
# clamp focal length to a reasonable range for stability during training
min_f = fov2focal(self.new_ones(self.shape[0]) * deg2rad(150), self.size[..., 1])
max_f = fov2focal(self.new_ones(self.shape[0]) * deg2rad(5), self.size[..., 1])
min_f = min_f.unsqueeze(-1).expand(-1, 2)
max_f = max_f.unsqueeze(-1).expand(-1, 2)
f = f.clamp(min=min_f, max=max_f)
# make sure focal ration stays the same (avoid inplace operations)
fx = f[..., 1] * self.f[..., 0] / self.f[..., 1]
f = torch.stack([fx, f[..., 1]], -1)
dist = self.dist if hasattr(self, "dist") else self.new_zeros(self.f.shape)
return self.__class__(torch.cat([self.size, f, self.c, dist], -1))
def scale(self, scales: Union[float, int, Tuple[Union[float, int]]]):
"""Update the self parameters after resizing an image."""
scales = (scales, scales) if isinstance(scales, (int, float)) else scales
s = scales if isinstance(scales, torch.Tensor) else self.new_tensor(scales)
dist = self.dist if hasattr(self, "dist") else self.new_zeros(self.f.shape)
return self.__class__(torch.cat([self.size * s, self.f * s, self.c * s, dist], -1))
def crop(self, pad: Tuple[float]):
"""Update the self parameters after cropping an image."""
pad = pad if isinstance(pad, torch.Tensor) else self.new_tensor(pad)
size = self.size + pad.to(self.size)
c = self.c + pad.to(self.c) / 2
dist = self.dist if hasattr(self, "dist") else self.new_zeros(self.f.shape)
return self.__class__(torch.cat([size, self.f, c, dist], -1))
@autocast
def in_image(self, p2d: torch.Tensor):
"""Check if 2D points are within the image boundaries."""
assert p2d.shape[-1] == 2
size = self.size.unsqueeze(-2)
return torch.all((p2d >= 0) & (p2d <= (size - 1)), -1)
@autocast
def project(self, p3d: torch.Tensor) -> Tuple[torch.Tensor]:
"""Project 3D points into the self plane and check for visibility."""
z = p3d[..., -1]
valid = z > self.eps
z = z.clamp(min=self.eps)
p2d = p3d[..., :-1] / z.unsqueeze(-1)
return p2d, valid
def J_project(self, p3d: torch.Tensor):
"""Jacobian of the projection function."""
x, y, z = p3d[..., 0], p3d[..., 1], p3d[..., 2]
zero = torch.zeros_like(z)
z = z.clamp(min=self.eps)
J = torch.stack([1 / z, zero, -x / z**2, zero, 1 / z, -y / z**2], dim=-1)
J = J.reshape(p3d.shape[:-1] + (2, 3))
return J # N x 2 x 3
def undo_scale_crop(self, data: Dict[str, torch.Tensor]):
"""Undo transforms done during scaling and cropping."""
camera = self.crop(-data["crop_pad"]) if "crop_pad" in data else self
return camera.scale(1.0 / data["scales"])
@abstractmethod
def distort(self, pts: torch.Tensor, return_scale: bool = False) -> Tuple[torch.Tensor]:
"""Distort normalized 2D coordinates and check for validity of the distortion model."""
raise NotImplementedError("distort() must be implemented.")
def J_distort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor:
"""Jacobian of the distortion function."""
if wrt == "scale2pts": # (..., 2)
J = [
vmap(jacfwd(lambda x: self[idx].distort(x, return_scale=True)[0]))(p2d[idx])[None]
for idx in range(p2d.shape[0])
]
return torch.cat(J, dim=0).squeeze(-3, -2)
elif wrt == "scale2dist": # (..., 1)
J = []
for idx in range(p2d.shape[0]): # loop to batch pts dimension
def func(x):
params = torch.cat([self._data[idx, :6], x[None]], -1)
return self.__class__(params).distort(p2d[idx], return_scale=True)[0]
J.append(vmap(jacfwd(func))(self[idx].dist))
return torch.cat(J, dim=0)
else:
raise NotImplementedError(f"Jacobian not implemented for wrt={wrt}")
@abstractmethod
def undistort(self, pts: torch.Tensor) -> Tuple[torch.Tensor]:
"""Undistort normalized 2D coordinates and check for validity of the distortion model."""
raise NotImplementedError("undistort() must be implemented.")
def J_undistort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor:
"""Jacobian of the undistortion function."""
if wrt == "pts": # (..., 2, 2)
J = [
vmap(jacfwd(lambda x: self[idx].undistort(x)[0]))(p2d[idx])[None]
for idx in range(p2d.shape[0])
]
return torch.cat(J, dim=0).squeeze(-3)
elif wrt == "dist": # (..., 1)
J = []
for batch_idx in range(p2d.shape[0]): # loop to batch pts dimension
def func(x):
params = torch.cat([self._data[batch_idx, :6], x[None]], -1)
return self.__class__(params).undistort(p2d[batch_idx])[0]
J.append(vmap(jacfwd(func))(self[batch_idx].dist))
return torch.cat(J, dim=0)
else:
raise NotImplementedError(f"Jacobian not implemented for wrt={wrt}")
@autocast
def up_projection_offset(self, p2d: torch.Tensor) -> torch.Tensor:
"""Compute the offset for the up-projection."""
return self.J_distort(p2d, wrt="scale2pts") # (B, N, 2)
def J_up_projection_offset(self, p2d: torch.Tensor, wrt: str = "uv") -> torch.Tensor:
"""Jacobian of the distortion offset for up-projection."""
if wrt == "uv": # (B, N, 2, 2)
J = [
vmap(jacfwd(lambda x: self[idx].up_projection_offset(x)[0, 0]))(p2d[idx])[None]
for idx in range(p2d.shape[0])
]
return torch.cat(J, dim=0)
elif wrt == "dist": # (B, N, 2)
J = []
for batch_idx in range(p2d.shape[0]): # loop to batch pts dimension
def func(x):
params = torch.cat([self._data[batch_idx, :6], x[None]], -1)[None]
return self.__class__(params).up_projection_offset(p2d[batch_idx][None])
J.append(vmap(jacfwd(func))(self[batch_idx].dist))
return torch.cat(J, dim=0).squeeze(1)
else:
raise NotImplementedError(f"Jacobian not implemented for wrt={wrt}")
@autocast
def denormalize(self, p2d: torch.Tensor) -> torch.Tensor:
"""Convert normalized 2D coordinates into pixel coordinates."""
return p2d * self.f.unsqueeze(-2) + self.c.unsqueeze(-2)
def J_denormalize(self):
"""Jacobian of the denormalization function."""
return torch.diag_embed(self.f) # ..., 2 x 2
@autocast
def normalize(self, p2d: torch.Tensor) -> torch.Tensor:
"""Convert pixel coordinates into normalized 2D coordinates."""
return (p2d - self.c.unsqueeze(-2)) / (self.f.unsqueeze(-2))
def J_normalize(self, p2d: torch.Tensor, wrt: str = "f"):
"""Jacobian of the normalization function."""
# ... x N x 2 x 2
if wrt == "f":
J_f = -(p2d - self.c.unsqueeze(-2)) / ((self.f.unsqueeze(-2)) ** 2)
return torch.diag_embed(J_f)
elif wrt == "pts":
J_pts = 1 / self.f
return torch.diag_embed(J_pts)
else:
raise NotImplementedError(f"Jacobian not implemented for wrt={wrt}")
def pixel_coordinates(self) -> torch.Tensor:
"""Pixel coordinates in self frame.
Returns:
torch.Tensor: Pixel coordinates as a tensor of shape (B, h * w, 2).
"""
w, h = self.size[0].unbind(-1)
h, w = h.round().to(int), w.round().to(int)
# create grid
x = torch.arange(0, w, dtype=self.dtype, device=self.device)
y = torch.arange(0, h, dtype=self.dtype, device=self.device)
x, y = torch.meshgrid(x, y, indexing="xy")
xy = torch.stack((x, y), dim=-1).reshape(-1, 2) # shape (h * w, 2)
# add batch dimension (normalize() would broadcast but we make it explicit)
B = self.shape[0]
xy = xy.unsqueeze(0).expand(B, -1, -1) # if B > 0 else xy
return xy.to(self.device).to(self.dtype)
@autocast
def pixel_bearing_many(self, p3d: torch.Tensor) -> torch.Tensor:
"""Get the bearing vectors of pixel coordinates by normalizing them."""
return F.normalize(p3d, dim=-1)
@autocast
def world2image(self, p3d: torch.Tensor) -> Tuple[torch.Tensor]:
"""Transform 3D points into 2D pixel coordinates."""
p2d, visible = self.project(p3d)
p2d, mask = self.distort(p2d)
p2d = self.denormalize(p2d)
valid = visible & mask & self.in_image(p2d)
return p2d, valid
@autocast
def J_world2image(self, p3d: torch.Tensor):
"""Jacobian of the world2image function."""
p2d_proj, valid = self.project(p3d)
J_dnorm = self.J_denormalize()
J_dist = self.J_distort(p2d_proj)
J_proj = self.J_project(p3d)
J = torch.einsum("...ij,...jk,...kl->...il", J_dnorm, J_dist, J_proj)
return J, valid
@autocast
def image2world(self, p2d: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""Transform point in the image plane to 3D world coordinates."""
p2d = self.normalize(p2d)
p2d, valid = self.undistort(p2d)
ones = p2d.new_ones(p2d.shape[:-1] + (1,))
p3d = torch.cat([p2d, ones], -1)
return p3d, valid
@autocast
def J_image2world(self, p2d: torch.Tensor, wrt: str = "f") -> Tuple[torch.Tensor, torch.Tensor]:
"""Jacobian of the image2world function."""
if wrt == "dist":
p2d_norm = self.normalize(p2d)
return self.J_undistort(p2d_norm, wrt)
elif wrt == "f":
J_norm2f = self.J_normalize(p2d, wrt)
p2d_norm = self.normalize(p2d)
J_dist2norm = self.J_undistort(p2d_norm, "pts")
return torch.einsum("...ij,...jk->...ik", J_dist2norm, J_norm2f)
else:
raise ValueError(f"Unknown wrt: {wrt}")
@autocast
def undistort_image(self, img: torch.Tensor) -> torch.Tensor:
"""Undistort an image using the distortion model."""
assert self.shape[0] == 1, "Batch size must be 1."
W, H = self.size.unbind(-1)
H, W = H.int().item(), W.int().item()
x, y = torch.meshgrid(torch.arange(0, W), torch.arange(0, H), indexing="xy")
coords = torch.stack((x, y), dim=-1).reshape(-1, 2)
p3d, _ = self.pinhole().image2world(coords.to(self.device).to(self.dtype))
p2d, _ = self.world2image(p3d)
mapx, mapy = p2d[..., 0].reshape((1, H, W)), p2d[..., 1].reshape((1, H, W))
grid = torch.stack((mapx, mapy), dim=-1)
grid = 2.0 * grid / torch.tensor([W - 1, H - 1]).to(grid) - 1
return F.grid_sample(img, grid, align_corners=True)
def get_img_from_pano(
self,
pano_img: torch.Tensor,
gravity: Gravity,
yaws: torch.Tensor = 0.0,
resize_factor: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Render an image from a panorama.
Args:
pano_img (torch.Tensor): Panorama image of shape (3, H, W) in [0, 1].
gravity (Gravity): Gravity direction of the camera.
yaws (torch.Tensor | list, optional): Yaw angle in radians. Defaults to 0.0.
resize_factor (torch.Tensor, optional): Resize the panorama to be a multiple of the
field of view. Defaults to 1.
Returns:
torch.Tensor: Image rendered from the panorama.
"""
B = self.shape[0]
if B > 0:
assert self.size[..., 0].unique().shape[0] == 1, "All images must have the same width."
assert self.size[..., 1].unique().shape[0] == 1, "All images must have the same height."
w, h = self.size[0].unbind(-1)
h, w = h.round().to(int), w.round().to(int)
if isinstance(yaws, (int, float)):
yaws = [yaws]
if isinstance(resize_factor, (int, float)):
resize_factor = [resize_factor]
yaws = (
yaws.to(self.dtype).to(self.device)
if isinstance(yaws, torch.Tensor)
else self.new_tensor(yaws)
)
if isinstance(resize_factor, torch.Tensor):
resize_factor = resize_factor.to(self.dtype).to(self.device)
elif resize_factor is not None:
resize_factor = self.new_tensor(resize_factor)
assert isinstance(pano_img, torch.Tensor), "Panorama image must be a torch.Tensor."
pano_img = pano_img if pano_img.dim() == 4 else pano_img.unsqueeze(0) # B x H x W x 3
pano_imgs = []
for i, yaw in enumerate(yaws):
if resize_factor is not None:
# resize the panorama such that the fov of the panorama has the same height as the
# image
vfov = self.vfov[i] if B != 0 else self.vfov
scale = torch.pi / float(vfov) * float(h) / pano_img.shape[0] * resize_factor[i]
pano_shape = (int(pano_img.shape[0] * scale), int(pano_img.shape[1] * scale))
mode = "bicubic" if scale >= 1 else "area"
resized_pano = F.interpolate(pano_img, size=pano_shape, mode=mode)
else:
# make sure to copy: resized_pano = pano_img
resized_pano = pano_img
pano_shape = pano_img.shape[-2:][::-1]
pano_imgs.append((resized_pano, pano_shape))
xy = self.pixel_coordinates()
uv1, _ = self.image2world(xy)
bearings = self.pixel_bearing_many(uv1)
# rotate bearings
R_yaw = rad2rotmat(self.new_zeros(yaw.shape), self.new_zeros(yaw.shape), yaws)
rotated_bearings = bearings @ gravity.R @ R_yaw
# spherical coordinates
lon = torch.atan2(rotated_bearings[..., 0], rotated_bearings[..., 2])
lat = torch.atan2(
rotated_bearings[..., 1], torch.norm(rotated_bearings[..., [0, 2]], dim=-1)
)
images = []
for idx, (resized_pano, pano_shape) in enumerate(pano_imgs):
min_lon, max_lon = -torch.pi, torch.pi
min_lat, max_lat = -torch.pi / 2.0, torch.pi / 2.0
min_x, max_x = 0, pano_shape[0] - 1.0
min_y, max_y = 0, pano_shape[1] - 1.0
# map Spherical Coordinates to Panoramic Coordinates
nx = (lon[idx] - min_lon) / (max_lon - min_lon) * (max_x - min_x) + min_x
ny = (lat[idx] - min_lat) / (max_lat - min_lat) * (max_y - min_y) + min_y
# reshape and cast to numpy for remap
mapx, mapy = nx.reshape((1, h, w)), ny.reshape((1, h, w))
grid = torch.stack((mapx, mapy), dim=-1) # Add batch dimension
# Normalize to [-1, 1]
grid = 2.0 * grid / torch.tensor([pano_shape[-2] - 1, pano_shape[-1] - 1]).to(grid) - 1
# Apply grid sample
image = F.grid_sample(resized_pano, grid, align_corners=True)
images.append(image)
return torch.concatenate(images, 0) if B > 0 else images[0]
def __repr__(self):
"""Print the Camera object."""
return f"{self.__class__.__name__} {self.shape} {self.dtype} {self.device}"
class Pinhole(BaseCamera):
"""Implementation of the pinhole camera model.
Use this model for undistorted images.
"""
def distort(self, p2d: torch.Tensor, return_scale: bool = False) -> Tuple[torch.Tensor]:
"""Distort normalized 2D coordinates."""
if return_scale:
return p2d.new_ones(p2d.shape[:-1] + (1,))
return p2d, p2d.new_ones((p2d.shape[0], 1)).bool()
def J_distort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor:
"""Jacobian of the distortion function."""
if wrt == "pts":
return torch.eye(2, device=p2d.device, dtype=p2d.dtype).expand(p2d.shape[:-1] + (2, 2))
raise ValueError(f"Unknown wrt: {wrt}")
def undistort(self, pts: torch.Tensor) -> Tuple[torch.Tensor]:
"""Undistort normalized 2D coordinates."""
return pts, pts.new_ones((pts.shape[0], 1)).bool()
def J_undistort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor:
"""Jacobian of the undistortion function."""
if wrt == "pts":
return torch.eye(2, device=p2d.device, dtype=p2d.dtype).expand(p2d.shape[:-1] + (2, 2))
raise ValueError(f"Unknown wrt: {wrt}")
def J_up_projection_offset(self, p2d: torch.Tensor, wrt: str = "uv") -> torch.Tensor:
"""Jacobian of the up-projection offset."""
if wrt == "uv":
return torch.zeros(p2d.shape[:-1] + (2, 2), device=p2d.device, dtype=p2d.dtype)
raise ValueError(f"Unknown wrt: {wrt}")
class SimpleRadial(BaseCamera):
"""Implementation of the simple radial camera model.
Use this model for weakly distorted images.
The distortion model is 1 + k1 * r^2 where r^2 = x^2 + y^2.
The undistortion model is 1 - k1 * r^2 estimated as in
"An Exact Formula for Calculating Inverse Radial Lens Distortions" by Pierre Drap.
"""
@property
def dist(self) -> torch.Tensor:
"""Distortion parameters, with shape (..., 1)."""
return self._data[..., 6:]
@property
def k1(self) -> torch.Tensor:
"""Distortion parameters, with shape (...)."""
return self._data[..., 6]
def update_dist(self, delta: torch.Tensor, dist_range: Tuple[float, float] = (-0.7, 0.7)):
"""Update the self parameters after changing the k1 distortion parameter."""
delta_dist = self.new_ones(self.dist.shape) * delta
dist = (self.dist + delta_dist).clamp(*dist_range)
data = torch.cat([self.size, self.f, self.c, dist], -1)
return self.__class__(data)
@autocast
def check_valid(self, p2d: torch.Tensor) -> torch.Tensor:
"""Check if the distorted points are valid."""
return p2d.new_ones(p2d.shape[:-1]).bool()
def distort(self, p2d: torch.Tensor, return_scale: bool = False) -> Tuple[torch.Tensor]:
"""Distort normalized 2D coordinates and check for validity of the distortion model."""
r2 = torch.sum(p2d**2, -1, keepdim=True)
radial = 1 + self.k1[..., None, None] * r2
if return_scale:
return radial, None
return p2d * radial, self.check_valid(p2d)
def J_distort(self, p2d: torch.Tensor, wrt: str = "pts"):
"""Jacobian of the distortion function."""
if wrt == "scale2dist": # (..., 1)
return torch.sum(p2d**2, -1, keepdim=True)
elif wrt == "scale2pts": # (..., 2)
return 2 * self.k1[..., None, None] * p2d
else:
return super().J_distort(p2d, wrt)
@autocast
def undistort(self, p2d: torch.Tensor) -> Tuple[torch.Tensor]:
"""Undistort normalized 2D coordinates and check for validity of the distortion model."""
b1 = -self.k1[..., None, None]
r2 = torch.sum(p2d**2, -1, keepdim=True)
radial = 1 + b1 * r2
return p2d * radial, self.check_valid(p2d)
@autocast
def J_undistort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor:
"""Jacobian of the undistortion function."""
b1 = -self.k1[..., None, None]
r2 = torch.sum(p2d**2, -1, keepdim=True)
if wrt == "dist":
return -r2 * p2d
elif wrt == "pts":
radial = 1 + b1 * r2
radial_diag = torch.diag_embed(radial.expand(radial.shape[:-1] + (2,)))
ppT = torch.einsum("...i,...j->...ij", p2d, p2d) # (..., 2, 2)
return (2 * b1[..., None] * ppT) + radial_diag
else:
return super().J_undistort(p2d, wrt)
def J_up_projection_offset(self, p2d: torch.Tensor, wrt: str = "uv") -> torch.Tensor:
"""Jacobian of the up-projection offset."""
if wrt == "uv": # (..., 2, 2)
return torch.diag_embed((2 * self.k1[..., None, None]).expand(p2d.shape[:-1] + (2,)))
elif wrt == "dist":
return 2 * p2d # (..., 2)
else:
return super().J_up_projection_offset(p2d, wrt)
class SimpleDivisional(BaseCamera):
"""Implementation of the simple divisional camera model.
Use this model for strongly distorted images.
The distortion model is (1 - sqrt(1 - 4 * k1 * r^2)) / (2 * k1 * r^2) where r^2 = x^2 + y^2.
The undistortion model is 1 / (1 + k1 * r^2).
"""
@property
def dist(self) -> torch.Tensor:
"""Distortion parameters, with shape (..., 1)."""
return self._data[..., 6:]
@property
def k1(self) -> torch.Tensor:
"""Distortion parameters, with shape (...)."""
return self._data[..., 6]
def update_dist(self, delta: torch.Tensor, dist_range: Tuple[float, float] = (-3.0, 3.0)):
"""Update the self parameters after changing the k1 distortion parameter."""
delta_dist = self.new_ones(self.dist.shape) * delta
dist = (self.dist + delta_dist).clamp(*dist_range)
data = torch.cat([self.size, self.f, self.c, dist], -1)
return self.__class__(data)
@autocast
def check_valid(self, p2d: torch.Tensor) -> torch.Tensor:
"""Check if the distorted points are valid."""
return p2d.new_ones(p2d.shape[:-1]).bool()
def distort(self, p2d: torch.Tensor, return_scale: bool = False) -> Tuple[torch.Tensor]:
"""Distort normalized 2D coordinates and check for validity of the distortion model."""
r2 = torch.sum(p2d**2, -1, keepdim=True)
radial = 1 - torch.sqrt((1 - 4 * self.k1[..., None, None] * r2).clamp(min=0))
denom = 2 * self.k1[..., None, None] * r2
ones = radial.new_ones(radial.shape)
radial = torch.where(denom == 0, ones, radial / denom.masked_fill(denom == 0, 1e6))
if return_scale:
return radial, None
return p2d * radial, self.check_valid(p2d)
def J_distort(self, p2d: torch.Tensor, wrt: str = "pts"):
"""Jacobian of the distortion function."""
r2 = torch.sum(p2d**2, -1, keepdim=True)
t0 = torch.sqrt((1 - 4 * self.k1[..., None, None] * r2).clamp(min=1e-6))
if wrt == "scale2pts": # (B, N, 2)
d1 = t0 * 2 * r2
d2 = self.k1[..., None, None] * r2**2
denom = d1 * d2
return p2d * (4 * d2 - (1 - t0) * d1) / denom.masked_fill(denom == 0, 1e6)
elif wrt == "scale2dist":
d1 = 2 * self.k1[..., None, None] * t0
d2 = 2 * r2 * self.k1[..., None, None] ** 2
denom = d1 * d2
return (2 * d2 - (1 - t0) * d1) / denom.masked_fill(denom == 0, 1e6)
else:
return super().J_distort(p2d, wrt)
@autocast
def undistort(self, p2d: torch.Tensor) -> Tuple[torch.Tensor]:
"""Undistort normalized 2D coordinates and check for validity of the distortion model."""
r2 = torch.sum(p2d**2, -1, keepdim=True)
denom = 1 + self.k1[..., None, None] * r2
radial = 1 / denom.masked_fill(denom == 0, 1e6)
return p2d * radial, self.check_valid(p2d)
def J_undistort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor:
"""Jacobian of the undistortion function."""
# return super().J_undistort(p2d, wrt)
r2 = torch.sum(p2d**2, -1, keepdim=True)
k1 = self.k1[..., None, None]
if wrt == "dist":
denom = (1 + k1 * r2) ** 2
return -r2 / denom.masked_fill(denom == 0, 1e6) * p2d
elif wrt == "pts":
t0 = 1 + k1 * r2
t0 = t0.masked_fill(t0 == 0, 1e6)
ppT = torch.einsum("...i,...j->...ij", p2d, p2d) # (..., 2, 2)
J = torch.diag_embed((1 / t0).expand(p2d.shape[:-1] + (2,)))
return J - 2 * k1[..., None] * ppT / t0[..., None] ** 2 # (..., N, 2, 2)
else:
return super().J_undistort(p2d, wrt)
def J_up_projection_offset(self, p2d: torch.Tensor, wrt: str = "uv") -> torch.Tensor:
"""Jacobian of the up-projection offset.
func(uv, dist) = 4 / (2 * norm2(uv)^2 * (1-4*k1*norm2(uv)^2)^0.5) * uv
- (1-(1-4*k1*norm2(uv)^2)^0.5) / (k1 * norm2(uv)^4) * uv
"""
k1 = self.k1[..., None, None]
r2 = torch.sum(p2d**2, -1, keepdim=True)
t0 = (1 - 4 * k1 * r2).clamp(min=1e-6)
t1 = torch.sqrt(t0)
if wrt == "dist":
denom = 4 * t0 ** (3 / 2)
denom = denom.masked_fill(denom == 0, 1e6)
J = 16 / denom
denom = r2 * t1 * k1
denom = denom.masked_fill(denom == 0, 1e6)
J = J - 2 / denom
denom = (r2 * k1) ** 2
denom = denom.masked_fill(denom == 0, 1e6)
J = J + (1 - t1) / denom
return J * p2d
elif wrt == "uv":
# ! unstable (gradient checker might fail), rewrite to use single division (by denom)
ppT = torch.einsum("...i,...j->...ij", p2d, p2d) # (..., 2, 2)
denom = 2 * r2 * t1
denom = denom.masked_fill(denom == 0, 1e6)
J = torch.diag_embed((4 / denom).expand(p2d.shape[:-1] + (2,)))
denom = 4 * t1 * r2**2
denom = denom.masked_fill(denom == 0, 1e6)
J = J - 16 / denom[..., None] * ppT
denom = 4 * r2 * t0 ** (3 / 2)
denom = denom.masked_fill(denom == 0, 1e6)
J = J + (32 * k1[..., None]) / denom[..., None] * ppT
denom = r2**2 * t1
denom = denom.masked_fill(denom == 0, 1e6)
J = J - 4 / denom[..., None] * ppT
denom = k1 * r2**3
denom = denom.masked_fill(denom == 0, 1e6)
J = J + (4 * (1 - t1) / denom)[..., None] * ppT
denom = k1 * r2**2
denom = denom.masked_fill(denom == 0, 1e6)
J = J - torch.diag_embed(((1 - t1) / denom).expand(p2d.shape[:-1] + (2,)))
return J
else:
return super().J_up_projection_offset(p2d, wrt)
camera_models = {
"pinhole": Pinhole,
"simple_radial": SimpleRadial,
"simple_divisional": SimpleDivisional,
}
|