File size: 14,991 Bytes
205a7af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
import argparse
import logging
import queue
import threading
import time
from time import time
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
from geocalib.extractor import GeoCalib
from geocalib.perspective_fields import get_perspective_field
from geocalib.utils import get_device, rad2deg
# flake8: noqa
# mypy: ignore-errors
description = """
-------------------------
GeoCalib Interactive Demo
-------------------------
This script is an interactive demo for GeoCalib. It will open a window showing the camera feed and
the calibration results.
Arguments:
- '--camera_id': Camera ID to use. If none, will ask for ip of droidcam (https://droidcam.app)
You can toggle different features using the following keys:
- 'h': Toggle horizon line
- 'u': Toggle up vector field
- 'l': Toggle latitude heatmap
- 'c': Toggle confidence heatmap
- 'd': Toggle undistorted image
- 'g': Toggle grid of points
- 'b': Toggle box object
You can also change the camera model using the following keys:
- '1': Pinhole
- '2': Simple Radial
- '3': Simple Divisional
Press 'q' to quit the demo.
"""
# Custom VideoCapture class to get the most recent frame instead FIFO
class VideoCapture:
def __init__(self, name):
self.cap = cv2.VideoCapture(name)
self.q = queue.Queue()
t = threading.Thread(target=self._reader)
t.daemon = True
t.start()
# read frames as soon as they are available, keeping only most recent one
def _reader(self):
while True:
ret, frame = self.cap.read()
if not ret:
break
if not self.q.empty():
try:
self.q.get_nowait() # discard previous (unprocessed) frame
except queue.Empty:
pass
self.q.put(frame)
def read(self):
return 1, self.q.get()
def isOpened(self):
return self.cap.isOpened()
def add_text(frame, text, align_left=True, align_top=True):
"""Add text to a plot."""
h, w = frame.shape[:2]
sc = min(h / 640.0, 2.0)
Ht = int(40 * sc) # text height
for i, l in enumerate(text.split("\n")):
max_line = len(max([l for l in text.split("\n")], key=len))
x = int(8 * sc if align_left else w - (max_line) * sc * 18)
y = Ht * (i + 1) if align_top else h - Ht * (len(text.split("\n")) - i - 1) - int(8 * sc)
c_back, c_front = (0, 0, 0), (255, 255, 255)
font, style = cv2.FONT_HERSHEY_DUPLEX, cv2.LINE_AA
cv2.putText(frame, l, (x, y), font, 1.0 * sc, c_back, int(6 * sc), style)
cv2.putText(frame, l, (x, y), font, 1.0 * sc, c_front, int(1 * sc), style)
return frame
def is_corner(p, h, w):
"""Check if a point is a corner."""
return p in [(0, 0), (0, h - 1), (w - 1, 0), (w - 1, h - 1)]
def plot_latitude(frame, latitude):
"""Plot latitude heatmap."""
if not isinstance(latitude, np.ndarray):
latitude = latitude.cpu().numpy()
cmap = plt.get_cmap("seismic")
h, w = frame.shape[0], frame.shape[1]
sc = min(h / 640.0, 2.0)
vmin, vmax = -90, 90
latitude = (latitude - vmin) / (vmax - vmin)
colors = (cmap(latitude)[..., :3] * 255).astype(np.uint8)[..., ::-1]
frame = cv2.addWeighted(frame, 1 - 0.4, colors, 0.4, 0)
for contour_line in np.linspace(vmin, vmax, 15):
contour_line = (contour_line - vmin) / (vmax - vmin)
mask = (latitude > contour_line).astype(np.uint8)
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
color = (np.array(cmap(contour_line))[:3] * 255).astype(np.uint8)[::-1]
# remove corners
contour = [p for p in contour if not is_corner(tuple(p[0]), h, w)]
for index, item in enumerate(contour[:-1]):
cv2.line(frame, item[0], contour[index + 1][0], color.tolist(), int(5 * sc))
return frame
def draw_horizon_line(frame, heatmap):
"""Draw a horizon line."""
if not isinstance(heatmap, np.ndarray):
heatmap = heatmap.cpu().numpy()
h, w = frame.shape[0], frame.shape[1]
sc = min(h / 640.0, 2.0)
color = (0, 255, 255)
vmin, vmax = -90, 90
heatmap = (heatmap - vmin) / (vmax - vmin)
contours, _ = cv2.findContours(
(heatmap > 0.5).astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
if contours:
contour = [p for p in contours[0] if not is_corner(tuple(p[0]), h, w)]
for index, item in enumerate(contour[:-1]):
cv2.line(frame, item[0], contour[index + 1][0], color, int(5 * sc))
return frame
def plot_confidence(frame, confidence):
"""Plot confidence heatmap."""
if not isinstance(confidence, np.ndarray):
confidence = confidence.cpu().numpy()
confidence = np.log10(confidence.clip(1e-6)).clip(-4)
confidence = (confidence - confidence.min()) / (confidence.max() - confidence.min())
cmap = plt.get_cmap("turbo")
colors = (cmap(confidence)[..., :3] * 255).astype(np.uint8)[..., ::-1]
return cv2.addWeighted(frame, 1 - 0.4, colors, 0.4, 0)
def plot_vector_field(frame, vector_field):
"""Plot a vector field."""
if not isinstance(vector_field, np.ndarray):
vector_field = vector_field.cpu().numpy()
H, W = frame.shape[:2]
sc = min(H / 640.0, 2.0)
subsample = min(W, H) // 10
offset_x = ((W % subsample) + subsample) // 2
samples_x = np.arange(offset_x, W, subsample)
samples_y = np.arange(int(subsample * 0.9), H, subsample)
vec_len = 40 * sc
x_grid, y_grid = np.meshgrid(samples_x, samples_y)
x, y = vector_field[:, samples_y][:, :, samples_x]
for xi, yi, xi_dir, yi_dir in zip(x_grid.ravel(), y_grid.ravel(), x.ravel(), y.ravel()):
start = (xi, yi)
end = (int(xi + xi_dir * vec_len), int(yi + yi_dir * vec_len))
cv2.arrowedLine(
frame, start, end, (0, 255, 0), int(5 * sc), line_type=cv2.LINE_AA, tipLength=0.3
)
return frame
def plot_box(frame, gravity, camera):
"""Plot a box object."""
pts = np.array(
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]]
)
pts = pts - np.array([0.5, 1, 0.5])
rotation_vec = cv2.Rodrigues(gravity.R.numpy()[0])[0]
t = np.array([0, 0, 1], dtype=float)
K = camera.K[0].cpu().numpy().astype(float)
dist = np.zeros(4, dtype=float)
axis_points, _ = cv2.projectPoints(
0.1 * pts.reshape(-1, 3).astype(float), rotation_vec, t, K, dist
)
h = frame.shape[0]
sc = min(h / 640.0, 2.0)
color = (85, 108, 228)
for p in axis_points:
center = tuple((int(p[0][0]), int(p[0][1])))
frame = cv2.circle(frame, center, 10, color, -1, cv2.LINE_AA)
for i in range(0, 4):
p1 = axis_points[i].astype(int)
p2 = axis_points[i + 4].astype(int)
frame = cv2.line(frame, tuple(p1[0]), tuple(p2[0]), color, int(5 * sc), cv2.LINE_AA)
p1 = axis_points[i].astype(int)
p2 = axis_points[(i + 1) % 4].astype(int)
frame = cv2.line(frame, tuple(p1[0]), tuple(p2[0]), color, int(5 * sc), cv2.LINE_AA)
p1 = axis_points[i + 4].astype(int)
p2 = axis_points[(i + 1) % 4 + 4].astype(int)
frame = cv2.line(frame, tuple(p1[0]), tuple(p2[0]), color, int(5 * sc), cv2.LINE_AA)
return frame
def plot_grid(frame, gravity, camera, grid_size=0.2, num_points=5):
"""Plot a grid of points."""
h = frame.shape[0]
sc = min(h / 640.0, 2.0)
samples = np.linspace(-grid_size, grid_size, num_points)
xz = np.meshgrid(samples, samples)
pts = np.stack((xz[0].ravel(), np.zeros_like(xz[0].ravel()), xz[1].ravel()), axis=-1)
# project points
rotation_vec = cv2.Rodrigues(gravity.R.numpy()[0])[0]
t = np.array([0, 0, 1], dtype=float)
K = camera.K[0].cpu().numpy().astype(float)
dist = np.zeros(4, dtype=float)
axis_points, _ = cv2.projectPoints(pts.reshape(-1, 3).astype(float), rotation_vec, t, K, dist)
color = (192, 77, 58)
# draw points
for p in axis_points:
center = tuple((int(p[0][0]), int(p[0][1])))
frame = cv2.circle(frame, center, 10, color, -1, cv2.LINE_AA)
# draw lines
for i in range(num_points):
for j in range(num_points - 1):
p1 = axis_points[i * num_points + j].astype(int)
p2 = axis_points[i * num_points + j + 1].astype(int)
frame = cv2.line(frame, tuple(p1[0]), tuple(p2[0]), color, int(5 * sc), cv2.LINE_AA)
p1 = axis_points[j * num_points + i].astype(int)
p2 = axis_points[(j + 1) * num_points + i].astype(int)
frame = cv2.line(frame, tuple(p1[0]), tuple(p2[0]), color, int(5 * sc), cv2.LINE_AA)
return frame
def undistort_image(img, camera, padding=0.3):
"""Undistort an image."""
W, H = camera.size.unbind(-1)
H, W = H.int().item(), W.int().item()
pad_h, pad_w = int(H * padding), int(W * padding)
x, y = torch.meshgrid(torch.arange(0, W + pad_w), torch.arange(0, H + pad_h), indexing="xy")
coords = torch.stack((x, y), dim=-1).reshape(-1, 2) - torch.tensor([pad_w / 2, pad_h / 2])
p3d, _ = camera.pinhole().image2world(coords.to(camera.device).to(camera.dtype))
p2d, _ = camera.world2image(p3d)
p2d = p2d.float().numpy().reshape(H + pad_h, W + pad_w, 2)
img = cv2.remap(img, p2d[..., 0], p2d[..., 1], cv2.INTER_LINEAR, borderValue=(254, 254, 254))
return cv2.resize(img, (W, H))
class InteractiveDemo:
def __init__(self, capture: VideoCapture, device: str) -> None:
self.cap = capture
self.device = torch.device(device)
self.model = GeoCalib().to(device)
self.up_toggle = False
self.lat_toggle = False
self.conf_toggle = False
self.hl_toggle = False
self.grid_toggle = False
self.box_toggle = False
self.undist_toggle = False
self.camera_model = "pinhole"
def render_frame(self, frame, calibration):
"""Render the frame with the calibration results."""
camera, gravity = calibration["camera"].cpu(), calibration["gravity"].cpu()
if self.undist_toggle:
return undistort_image(frame, camera)
up, lat = get_perspective_field(camera, gravity)
if gravity.pitch[0] > 0:
frame = plot_box(frame, gravity, camera) if self.box_toggle else frame
frame = plot_grid(frame, gravity, camera) if self.grid_toggle else frame
else:
frame = plot_grid(frame, gravity, camera) if self.grid_toggle else frame
frame = plot_box(frame, gravity, camera) if self.box_toggle else frame
frame = draw_horizon_line(frame, lat[0, 0]) if self.hl_toggle else frame
if self.conf_toggle and self.up_toggle:
frame = plot_confidence(frame, calibration["up_confidence"][0])
frame = plot_vector_field(frame, up[0]) if self.up_toggle else frame
if self.conf_toggle and self.lat_toggle:
frame = plot_confidence(frame, calibration["latitude_confidence"][0])
frame = plot_latitude(frame, rad2deg(lat)[0, 0]) if self.lat_toggle else frame
return frame
def format_results(self, calibration):
"""Format the calibration results."""
camera, gravity = calibration["camera"].cpu(), calibration["gravity"].cpu()
vfov, focal = camera.vfov[0].item(), camera.f[0, 0].item()
fov_unc = rad2deg(calibration["vfov_uncertainty"].item())
f_unc = calibration["focal_uncertainty"].item()
roll, pitch = gravity.rp[0].unbind(-1)
roll, pitch, vfov = rad2deg(roll), rad2deg(pitch), rad2deg(vfov)
roll_unc = rad2deg(calibration["roll_uncertainty"].item())
pitch_unc = rad2deg(calibration["pitch_uncertainty"].item())
text = f"{self.camera_model.replace('_', ' ').title()}\n"
text += f"Roll: {roll:.2f} (+- {roll_unc:.2f})\n"
text += f"Pitch: {pitch:.2f} (+- {pitch_unc:.2f})\n"
text += f"vFoV: {vfov:.2f} (+- {fov_unc:.2f})\n"
text += f"Focal: {focal:.2f} (+- {f_unc:.2f})"
if hasattr(camera, "k1"):
text += f"\nK1: {camera.k1[0].item():.2f}"
return text
def update_toggles(self):
"""Update the toggles."""
key = cv2.waitKey(100) & 0xFF
if key == ord("h"):
self.hl_toggle = not self.hl_toggle
elif key == ord("u"):
self.up_toggle = not self.up_toggle
elif key == ord("l"):
self.lat_toggle = not self.lat_toggle
elif key == ord("c"):
self.conf_toggle = not self.conf_toggle
elif key == ord("d"):
self.undist_toggle = not self.undist_toggle
elif key == ord("g"):
self.grid_toggle = not self.grid_toggle
elif key == ord("b"):
self.box_toggle = not self.box_toggle
elif key == ord("1"):
self.camera_model = "pinhole"
elif key == ord("2"):
self.camera_model = "simple_radial"
elif key == ord("3"):
self.camera_model = "simple_divisional"
elif key == ord("q"):
return True
return False
def run(self):
"""Run the interactive demo."""
while True:
start = time()
ret, frame = self.cap.read()
if not ret:
print("Error: Failed to retrieve frame.")
break
# create tensor from frame
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = torch.tensor(img).permute(2, 0, 1) / 255.0
calibration = self.model.calibrate(img.to(self.device), camera_model=self.camera_model)
# render results to the frame
frame = self.render_frame(frame, calibration)
frame = add_text(frame, self.format_results(calibration))
end = time()
frame = add_text(
frame, f"FPS: {1 / (end - start):04.1f}", align_left=False, align_top=False
)
cv2.imshow("GeoCalib Demo", frame)
if self.update_toggles():
break
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--camera_id",
type=int,
default=None,
help="Camera ID to use. If none, will ask for ip of droidcam.",
)
args = parser.parse_args()
print(description)
device = get_device()
print(f"Running on: {device}")
# setup video capture
if args.camera_id is not None:
cap = VideoCapture(args.camera_id)
else:
ip = input("Enter the IP address of the camera: ")
cap = VideoCapture(f"http://{ip}:4747/video/force/1920x1080")
if not cap.isOpened():
raise ValueError("Error: Could not open camera.")
demo = InteractiveDemo(cap, device)
demo.run()
if __name__ == "__main__":
main()
|