File size: 10,438 Bytes
205a7af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
"""Miscellaneous functions and classes for the geocalib_inference package."""
import functools
import inspect
import logging
from typing import Callable, List
import numpy as np
import torch
logger = logging.getLogger(__name__)
# mypy: ignore-errors
def autocast(func: Callable) -> Callable:
"""Cast the inputs of a TensorWrapper method to PyTorch tensors if they are numpy arrays.
Use the device and dtype of the wrapper.
Args:
func (Callable): Method of a TensorWrapper class.
Returns:
Callable: Wrapped method.
"""
@functools.wraps(func)
def wrap(self, *args):
device = torch.device("cpu")
dtype = None
if isinstance(self, TensorWrapper):
if self._data is not None:
device = self.device
dtype = self.dtype
elif not inspect.isclass(self) or not issubclass(self, TensorWrapper):
raise ValueError(self)
cast_args = []
for arg in args:
if isinstance(arg, np.ndarray):
arg = torch.from_numpy(arg)
arg = arg.to(device=device, dtype=dtype)
cast_args.append(arg)
return func(self, *cast_args)
return wrap
class TensorWrapper:
"""Wrapper for PyTorch tensors."""
_data = None
@autocast
def __init__(self, data: torch.Tensor):
"""Wrapper for PyTorch tensors."""
self._data = data
@property
def shape(self) -> torch.Size:
"""Shape of the underlying tensor."""
return self._data.shape[:-1]
@property
def device(self) -> torch.device:
"""Get the device of the underlying tensor."""
return self._data.device
@property
def dtype(self) -> torch.dtype:
"""Get the dtype of the underlying tensor."""
return self._data.dtype
def __getitem__(self, index) -> torch.Tensor:
"""Get the underlying tensor."""
return self.__class__(self._data[index])
def __setitem__(self, index, item):
"""Set the underlying tensor."""
self._data[index] = item.data
def to(self, *args, **kwargs):
"""Move the underlying tensor to a new device."""
return self.__class__(self._data.to(*args, **kwargs))
def cpu(self):
"""Move the underlying tensor to the CPU."""
return self.__class__(self._data.cpu())
def cuda(self):
"""Move the underlying tensor to the GPU."""
return self.__class__(self._data.cuda())
def pin_memory(self):
"""Pin the underlying tensor to memory."""
return self.__class__(self._data.pin_memory())
def float(self):
"""Cast the underlying tensor to float."""
return self.__class__(self._data.float())
def double(self):
"""Cast the underlying tensor to double."""
return self.__class__(self._data.double())
def detach(self):
"""Detach the underlying tensor."""
return self.__class__(self._data.detach())
def numpy(self):
"""Convert the underlying tensor to a numpy array."""
return self._data.detach().cpu().numpy()
def new_tensor(self, *args, **kwargs):
"""Create a new tensor of the same type and device."""
return self._data.new_tensor(*args, **kwargs)
def new_zeros(self, *args, **kwargs):
"""Create a new tensor of the same type and device."""
return self._data.new_zeros(*args, **kwargs)
def new_ones(self, *args, **kwargs):
"""Create a new tensor of the same type and device."""
return self._data.new_ones(*args, **kwargs)
def new_full(self, *args, **kwargs):
"""Create a new tensor of the same type and device."""
return self._data.new_full(*args, **kwargs)
def new_empty(self, *args, **kwargs):
"""Create a new tensor of the same type and device."""
return self._data.new_empty(*args, **kwargs)
def unsqueeze(self, *args, **kwargs):
"""Create a new tensor of the same type and device."""
return self.__class__(self._data.unsqueeze(*args, **kwargs))
def squeeze(self, *args, **kwargs):
"""Create a new tensor of the same type and device."""
return self.__class__(self._data.squeeze(*args, **kwargs))
@classmethod
def stack(cls, objects: List, dim=0, *, out=None):
"""Stack a list of objects with the same type and shape."""
data = torch.stack([obj._data for obj in objects], dim=dim, out=out)
return cls(data)
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
"""Support torch functions."""
if kwargs is None:
kwargs = {}
return cls.stack(*args, **kwargs) if func is torch.stack else NotImplemented
class EuclideanManifold:
"""Simple euclidean manifold."""
@staticmethod
def J_plus(x: torch.Tensor) -> torch.Tensor:
"""Plus operator Jacobian."""
return torch.eye(x.shape[-1]).to(x)
@staticmethod
def plus(x: torch.Tensor, delta: torch.Tensor) -> torch.Tensor:
"""Plus operator."""
return x + delta
class SphericalManifold:
"""Implementation of the spherical manifold.
Following the derivation from 'Integrating Generic Sensor Fusion Algorithms with Sound State
Representations through Encapsulation of Manifolds' by Hertzberg et al. (B.2, p. 25).
Householder transformation following Algorithm 5.1.1 (p. 210) from 'Matrix Computations' by
Golub et al.
"""
@staticmethod
def householder_vector(x: torch.Tensor) -> torch.Tensor:
"""Return the Householder vector and beta.
Algorithm 5.1.1 (p. 210) from 'Matrix Computations' by Golub et al. (Johns Hopkins Studies
in Mathematical Sciences) but using the nth element of the input vector as pivot instead of
first.
This computes the vector v with v(n) = 1 and beta such that H = I - beta * v * v^T is
orthogonal and H * x = ||x||_2 * e_n.
Args:
x (torch.Tensor): [..., n] tensor.
Returns:
torch.Tensor: v of shape [..., n]
torch.Tensor: beta of shape [...]
"""
sigma = torch.sum(x[..., :-1] ** 2, -1)
xpiv = x[..., -1]
norm = torch.norm(x, dim=-1)
if torch.any(sigma < 1e-7):
sigma = torch.where(sigma < 1e-7, sigma + 1e-7, sigma)
logger.warning("sigma < 1e-7")
vpiv = torch.where(xpiv < 0, xpiv - norm, -sigma / (xpiv + norm))
beta = 2 * vpiv**2 / (sigma + vpiv**2)
v = torch.cat([x[..., :-1] / vpiv[..., None], torch.ones_like(vpiv)[..., None]], -1)
return v, beta
@staticmethod
def apply_householder(y: torch.Tensor, v: torch.Tensor, beta: torch.Tensor) -> torch.Tensor:
"""Apply Householder transformation.
Args:
y (torch.Tensor): Vector to transform of shape [..., n].
v (torch.Tensor): Householder vector of shape [..., n].
beta (torch.Tensor): Householder beta of shape [...].
Returns:
torch.Tensor: Transformed vector of shape [..., n].
"""
return y - v * (beta * torch.einsum("...i,...i->...", v, y))[..., None]
@classmethod
def J_plus(cls, x: torch.Tensor) -> torch.Tensor:
"""Plus operator Jacobian."""
v, beta = cls.householder_vector(x)
H = -torch.einsum("..., ...k, ...l->...kl", beta, v, v)
H = H + torch.eye(H.shape[-1]).to(H)
return H[..., :-1] # J
@classmethod
def plus(cls, x: torch.Tensor, delta: torch.Tensor) -> torch.Tensor:
"""Plus operator.
Equation 109 (p. 25) from 'Integrating Generic Sensor Fusion Algorithms with Sound State
Representations through Encapsulation of Manifolds' by Hertzberg et al. but using the nth
element of the input vector as pivot instead of first.
Args:
x: point on the manifold
delta: tangent vector
"""
eps = 1e-7
# keep norm is not equal to 1
nx = torch.norm(x, dim=-1, keepdim=True)
nd = torch.norm(delta, dim=-1, keepdim=True)
# make sure we don't divide by zero in backward as torch.where computes grad for both
# branches
nd_ = torch.where(nd < eps, nd + eps, nd)
sinc = torch.where(nd < eps, nd.new_ones(nd.shape), torch.sin(nd_) / nd_)
# cos is applied to last dim instead of first
exp_delta = torch.cat([sinc * delta, torch.cos(nd)], -1)
v, beta = cls.householder_vector(x)
return nx * cls.apply_householder(exp_delta, v, beta)
@torch.jit.script
def J_vecnorm(vec: torch.Tensor) -> torch.Tensor:
"""Compute the jacobian of vec / norm2(vec).
Args:
vec (torch.Tensor): [..., D] tensor.
Returns:
torch.Tensor: [..., D, D] Jacobian.
"""
D = vec.shape[-1]
norm_x = torch.norm(vec, dim=-1, keepdim=True).unsqueeze(-1) # (..., 1, 1)
if (norm_x == 0).any():
norm_x = norm_x + 1e-6
xxT = torch.einsum("...i,...j->...ij", vec, vec) # (..., D, D)
identity = torch.eye(D, device=vec.device, dtype=vec.dtype) # (D, D)
return identity / norm_x - (xxT / norm_x**3) # (..., D, D)
@torch.jit.script
def J_focal2fov(focal: torch.Tensor, h: torch.Tensor) -> torch.Tensor:
"""Compute the jacobian of the focal2fov function."""
return -4 * h / (4 * focal**2 + h**2)
@torch.jit.script
def J_up_projection(uv: torch.Tensor, abc: torch.Tensor, wrt: str = "uv") -> torch.Tensor:
"""Compute the jacobian of the up-vector projection.
Args:
uv (torch.Tensor): Normalized image coordinates of shape (..., 2).
abc (torch.Tensor): Gravity vector of shape (..., 3).
wrt (str, optional): Parameter to differentiate with respect to. Defaults to "uv".
Raises:
ValueError: If the wrt parameter is unknown.
Returns:
torch.Tensor: Jacobian with respect to the parameter.
"""
if wrt == "uv":
c = abc[..., 2][..., None, None, None]
return -c * torch.eye(2, device=uv.device, dtype=uv.dtype).expand(uv.shape[:-1] + (2, 2))
elif wrt == "abc":
J = uv.new_zeros(uv.shape[:-1] + (2, 3))
J[..., 0, 0] = 1
J[..., 1, 1] = 1
J[..., 0, 2] = -uv[..., 0]
J[..., 1, 2] = -uv[..., 1]
return J
else:
raise ValueError(f"Unknown wrt: {wrt}")
|