File size: 7,721 Bytes
205a7af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
"""Dataset for images created with 'create_dataset_from_pano.py'."""

import logging
from pathlib import Path
from typing import Any, Dict, List, Tuple

import pandas as pd
import torch
from omegaconf import DictConfig

from siclib.datasets.augmentations import IdentityAugmentation, augmentations
from siclib.datasets.base_dataset import BaseDataset
from siclib.geometry.camera import SimpleRadial
from siclib.geometry.gravity import Gravity
from siclib.geometry.perspective_fields import get_perspective_field
from siclib.utils.conversions import fov2focal
from siclib.utils.image import ImagePreprocessor, load_image
from siclib.utils.tools import fork_rng

logger = logging.getLogger(__name__)

# mypy: ignore-errors


def load_csv(
    csv_file: Path, img_root: Path
) -> Tuple[List[Dict[str, Any]], torch.Tensor, torch.Tensor]:
    """Load a CSV file containing image information.

    Args:
        csv_file (str): Path to the CSV file.
        img_root (str): Path to the root directory containing the images.

    Returns:
        list: List of dictionaries containing the image paths and camera parameters.
    """
    df = pd.read_csv(csv_file)

    infos, params, gravity = [], [], []
    for _, row in df.iterrows():
        h = row["height"]
        w = row["width"]
        px = row.get("px", w / 2)
        py = row.get("py", h / 2)
        vfov = row["vfov"]
        f = fov2focal(torch.tensor(vfov), h)
        k1 = row.get("k1", 0)
        k2 = row.get("k2", 0)
        params.append(torch.tensor([w, h, f, f, px, py, k1, k2]))

        roll = row["roll"]
        pitch = row["pitch"]
        gravity.append(torch.tensor([roll, pitch]))

        infos.append({"name": row["fname"], "file_name": str(img_root / row["fname"])})

    params = torch.stack(params).float()
    gravity = torch.stack(gravity).float()
    return infos, params, gravity


class SimpleDataset(BaseDataset):
    """Dataset for images created with 'create_dataset_from_pano.py'."""

    default_conf = {
        # paths
        "dataset_dir": "???",
        "train_img_dir": "${.dataset_dir}/train",
        "val_img_dir": "${.dataset_dir}/val",
        "test_img_dir": "${.dataset_dir}/test",
        "train_csv": "${.dataset_dir}/train.csv",
        "val_csv": "${.dataset_dir}/val.csv",
        "test_csv": "${.dataset_dir}/test.csv",
        # data options
        "use_up": True,
        "use_latitude": True,
        "use_prior_focal": False,
        "use_prior_gravity": False,
        "use_prior_k1": False,
        # image options
        "grayscale": False,
        "preprocessing": ImagePreprocessor.default_conf,
        "augmentations": {"name": "geocalib", "verbose": False},
        "p_rotate": 0.0,  # probability to rotate image by +/- 90°
        "reseed": False,
        "seed": 0,
        # data loader options
        "num_workers": 8,
        "prefetch_factor": 2,
        "train_batch_size": 32,
        "val_batch_size": 32,
        "test_batch_size": 32,
    }

    def _init(self, conf):
        pass

    def get_dataset(self, split: str) -> torch.utils.data.Dataset:
        """Return a dataset for a given split."""
        return _SimpleDataset(self.conf, split)


class _SimpleDataset(torch.utils.data.Dataset):
    """Dataset for dataset for images created with 'create_dataset_from_pano.py'."""

    def __init__(self, conf: DictConfig, split: str):
        """Initialize the dataset."""
        self.conf = conf
        self.split = split
        self.img_dir = Path(conf.get(f"{split}_img_dir"))

        self.preprocessor = ImagePreprocessor(conf.preprocessing)

        # load image information
        assert f"{split}_csv" in conf, f"Missing {split}_csv in conf"
        infos_path = self.conf.get(f"{split}_csv")
        self.infos, self.parameters, self.gravity = load_csv(infos_path, self.img_dir)

        # define augmentations
        aug_name = conf.augmentations.name
        assert (
            aug_name in augmentations.keys()
        ), f'{aug_name} not in {" ".join(augmentations.keys())}'

        if self.split == "train":
            self.augmentation = augmentations[aug_name](conf.augmentations)
        else:
            self.augmentation = IdentityAugmentation()

    def __len__(self):
        return len(self.infos)

    def __getitem__(self, idx):
        if not self.conf.reseed:
            return self.getitem(idx)
        with fork_rng(self.conf.seed + idx, False):
            return self.getitem(idx)

    def _read_image(
        self, infos: Dict[str, Any], parameters: torch.Tensor, gravity: torch.Tensor
    ) -> Dict[str, Any]:
        path = Path(str(infos["file_name"]))

        # load image as uint8 and HWC for augmentation
        image = load_image(path, self.conf.grayscale, return_tensor=False)
        image = self.augmentation(image, return_tensor=True)

        # create radial camera -> same as pinhole if k1 = 0
        camera = SimpleRadial(parameters[None]).float()

        roll, pitch = gravity[None].unbind(-1)
        gravity = Gravity.from_rp(roll, pitch)

        # preprocess
        data = self.preprocessor(image)
        camera = camera.scale(data["scales"])
        camera = camera.crop(data["crop_pad"]) if "crop_pad" in data else camera

        priors = {"prior_gravity": gravity} if self.conf.use_prior_gravity else {}
        priors |= {"prior_focal": camera.f[..., 1]} if self.conf.use_prior_focal else {}
        priors |= {"prior_k1": camera.k1} if self.conf.use_prior_k1 else {}
        return {
            "name": infos["name"],
            "path": str(path),
            "camera": camera[0],
            "gravity": gravity[0],
            **priors,
            **data,
        }

    def _get_perspective(self, data):
        """Get perspective field."""
        camera = data["camera"]
        gravity = data["gravity"]

        up_field, lat_field = get_perspective_field(
            camera, gravity, use_up=self.conf.use_up, use_latitude=self.conf.use_latitude
        )

        out = {}
        if self.conf.use_up:
            out["up_field"] = up_field[0]
        if self.conf.use_latitude:
            out["latitude_field"] = lat_field[0]

        return out

    def getitem(self, idx: int):
        """Return a sample from the dataset."""
        infos = self.infos[idx]
        parameters = self.parameters[idx]
        gravity = self.gravity[idx]
        data = self._read_image(infos, parameters, gravity)

        if self.conf.use_up or self.conf.use_latitude:
            data |= self._get_perspective(data)

        return data


if __name__ == "__main__":
    # Create a dump of the dataset
    import argparse

    import matplotlib.pyplot as plt

    from siclib.visualization.visualize_batch import make_perspective_figures

    parser = argparse.ArgumentParser()
    parser.add_argument("--name", type=str, required=True)
    parser.add_argument("--data_dir", type=str)
    parser.add_argument("--split", type=str, default="train")
    parser.add_argument("--shuffle", action="store_true")
    parser.add_argument("--n_rows", type=int, default=4)
    parser.add_argument("--dpi", type=int, default=100)
    args = parser.parse_intermixed_args()

    dconf = SimpleDataset.default_conf
    dconf["name"] = args.name
    dconf["num_workers"] = 0
    dconf["prefetch_factor"] = None

    dconf["dataset_dir"] = args.data_dir
    dconf[f"{args.split}_batch_size"] = args.n_rows

    torch.set_grad_enabled(False)

    dataset = SimpleDataset(dconf)
    loader = dataset.get_data_loader(args.split, args.shuffle)

    with fork_rng(seed=42):
        for data in loader:
            pred = data
            break
        fig = make_perspective_figures(pred, data, n_pairs=args.n_rows)

    plt.show()