File size: 15,163 Bytes
205a7af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import logging
import resource
from collections import defaultdict
from pathlib import Path
from pprint import pprint
from typing import Dict, List, Tuple

import matplotlib.pyplot as plt
import numpy as np
import torch
from omegaconf import OmegaConf
from tqdm import tqdm

from siclib.datasets import get_dataset
from siclib.eval.eval_pipeline import EvalPipeline
from siclib.eval.io import get_eval_parser, load_model, parse_eval_args
from siclib.eval.utils import download_and_extract_benchmark, plot_scatter_grid
from siclib.geometry.base_camera import BaseCamera
from siclib.geometry.camera import Pinhole
from siclib.geometry.gravity import Gravity
from siclib.models.cache_loader import CacheLoader
from siclib.models.utils.metrics import (
    gravity_error,
    latitude_error,
    pitch_error,
    roll_error,
    up_error,
    vfov_error,
)
from siclib.settings import EVAL_PATH
from siclib.utils.conversions import rad2deg
from siclib.utils.export_predictions import export_predictions
from siclib.utils.tensor import add_batch_dim
from siclib.utils.tools import AUCMetric, set_seed
from siclib.visualization import visualize_batch, viz2d

# flake8: noqa
# mypy: ignore-errors

logger = logging.getLogger(__name__)

rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (4096, rlimit[1]))

torch.set_grad_enabled(False)


def calculate_pixel_projection_error(
    camera_pred: BaseCamera, camera_gt: BaseCamera, N: int = 500, distortion_only: bool = True
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Calculate the pixel projection error between two cameras.

    1. Project a grid of points with the ground truth camera to the image plane.
    2. Project the same grid of points with the estimated camera to the image plane.
    3. Calculate the pixel distance between the ground truth and estimated points.

    Args:
        camera_pred (Camera): Predicted camera.
        camera_gt (Camera): Ground truth camera.
        N (int, optional): Number of points in the grid. Defaults to 500.

    Returns:
        Tuple[torch.Tensor, torch.Tensor]: Pixel distance and valid pixels.
    """
    H, W = camera_gt.size.unbind(-1)
    H, W = H.int(), W.int()

    assert torch.allclose(
        camera_gt.size, camera_pred.size
    ), f"Cameras must have the same size: {camera_gt.size} != {camera_pred.size}"

    if distortion_only:
        params = camera_gt._data.clone()
        params[..., -2:] = camera_pred._data[..., -2:]
        CameraModel = type(camera_gt)
        camera_pred = CameraModel(params)

    x_gt, y_gt = torch.meshgrid(
        torch.linspace(0, H - 1, N), torch.linspace(0, W - 1, N), indexing="xy"
    )
    xy = torch.stack((x_gt, y_gt), dim=-1).reshape(-1, 2)

    camera_pin_gt = camera_gt.pinhole()
    uv_pin, _ = camera_pin_gt.image2world(xy)

    # gt
    xy_undist_gt, valid_dist_gt = camera_gt.world2image(uv_pin)
    # pred
    xy_undist, valid_dist = camera_pred.world2image(uv_pin)

    valid = valid_dist_gt & valid_dist

    dist = (xy_undist - xy_undist_gt) ** 2
    dist = (dist.sum(-1)).sqrt()

    return dist[valid_dist_gt], valid[valid_dist_gt]


def compute_camera_metrics(
    camera_pred: BaseCamera, camera_gt: BaseCamera, thresholds: List[float]
) -> Dict[str, float]:
    results = defaultdict(list)
    results["vfov"].append(rad2deg(camera_pred.vfov).item())
    results["vfov_error"].append(vfov_error(camera_pred, camera_gt).item())

    results["focal"].append(camera_pred.f[..., 1].item())
    focal_error = torch.abs(camera_pred.f[..., 1] - camera_gt.f[..., 1])
    results["focal_error"].append(focal_error.item())

    rel_focal_error = torch.abs(camera_pred.f[..., 1] - camera_gt.f[..., 1]) / camera_gt.f[..., 1]
    results["rel_focal_error"].append(rel_focal_error.item())

    if hasattr(camera_pred, "k1"):
        results["k1"].append(camera_pred.k1.item())
        k1_error = torch.abs(camera_pred.k1 - camera_gt.k1)
        results["k1_error"].append(k1_error.item())

        if thresholds is None:
            return results

        err, valid = calculate_pixel_projection_error(camera_pred, camera_gt, distortion_only=False)
        for th in thresholds:
            results[f"pixel_projection_error@{th}"].append(
                ((err[valid] < th).sum() / len(valid)).float().item()
            )

        err, valid = calculate_pixel_projection_error(camera_pred, camera_gt, distortion_only=True)
        for th in thresholds:
            results[f"pixel_distortion_error@{th}"].append(
                ((err[valid] < th).sum() / len(valid)).float().item()
            )
    return results


def compute_gravity_metrics(gravity_pred: Gravity, gravity_gt: Gravity) -> Dict[str, float]:
    results = defaultdict(list)
    results["roll"].append(rad2deg(gravity_pred.roll).item())
    results["pitch"].append(rad2deg(gravity_pred.pitch).item())

    results["roll_error"].append(roll_error(gravity_pred, gravity_gt).item())
    results["pitch_error"].append(pitch_error(gravity_pred, gravity_gt).item())
    results["gravity_error"].append(gravity_error(gravity_pred[None], gravity_gt[None]).item())
    return results


class SimplePipeline(EvalPipeline):
    default_conf = {
        "data": {},
        "model": {},
        "eval": {
            "thresholds": [1, 5, 10],
            "pixel_thresholds": [0.5, 1, 3, 5],
            "num_vis": 10,
            "verbose": True,
        },
        "url": None,  # url to benchmark.zip
    }

    export_keys = [
        "camera",
        "gravity",
    ]

    optional_export_keys = [
        "focal_uncertainty",
        "vfov_uncertainty",
        "roll_uncertainty",
        "pitch_uncertainty",
        "gravity_uncertainty",
        "up_field",
        "up_confidence",
        "latitude_field",
        "latitude_confidence",
    ]

    def _init(self, conf):
        self.verbose = conf.eval.verbose
        self.num_vis = self.conf.eval.num_vis

        self.CameraModel = Pinhole

        if conf.url is not None:
            ds_dir = Path(conf.data.dataset_dir)
            download_and_extract_benchmark(ds_dir.name, conf.url, ds_dir.parent)

    @classmethod
    def get_dataloader(cls, data_conf=None, batch_size=None):
        """Returns a data loader with samples for each eval datapoint"""
        data_conf = data_conf or cls.default_conf["data"]

        if batch_size is not None:
            data_conf["test_batch_size"] = batch_size

        do_shuffle = data_conf["test_batch_size"] > 1
        dataset = get_dataset(data_conf["name"])(data_conf)
        return dataset.get_data_loader("test", shuffle=do_shuffle)

    def get_predictions(self, experiment_dir, model=None, overwrite=False):
        """Export a prediction file for each eval datapoint"""
        # set_seed(0)
        pred_file = experiment_dir / "predictions.h5"
        if not pred_file.exists() or overwrite:
            if model is None:
                model = load_model(self.conf.model, self.conf.checkpoint)
            export_predictions(
                self.get_dataloader(self.conf.data),
                model,
                pred_file,
                keys=self.export_keys,
                optional_keys=self.optional_export_keys,
                verbose=self.verbose,
            )
        return pred_file

    def get_figures(self, results):
        figures = {}

        if self.num_vis == 0:
            return figures

        gl = ["up", "latitude"]
        rpf = ["roll", "pitch", "vfov"]

        # check if rpf in results
        if all(k in results for k in rpf):
            x_keys = [f"{k}_gt" for k in rpf]

            # gt vs error
            y_keys = [f"{k}_error" for k in rpf]
            fig, _ = plot_scatter_grid(results, x_keys, y_keys, show_means=False)
            figures |= {"rpf_gt_error": fig}

            # gt vs pred
            y_keys = [f"{k}" for k in rpf]
            fig, _ = plot_scatter_grid(results, x_keys, y_keys, diag=True, show_means=False)
            figures |= {"rpf_gt_pred": fig}

        if all(f"{k}_error" in results for k in gl):
            x_keys = [f"{k}_gt" for k in rpf]
            y_keys = [f"{k}_error" for k in gl]
            fig, _ = plot_scatter_grid(results, x_keys, y_keys, show_means=False)
            figures |= {"gl_gt_error": fig}

        return figures

    def run_eval(self, loader, pred_file):
        conf = self.conf.eval
        results = defaultdict(list)

        save_to = Path(pred_file).parent / "figures"
        if not save_to.exists() and self.num_vis > 0:
            save_to.mkdir()

        cache_loader = CacheLoader({"path": str(pred_file), "collate": None}).eval()

        if not self.verbose:
            logger.info(f"Evaluating {pred_file}")

        for i, data in enumerate(
            tqdm(loader, desc="Evaluating", total=len(loader), ncols=80, disable=not self.verbose)
        ):
            # NOTE: data is batched but pred is not
            pred = cache_loader(data)

            results["names"].append(data["name"][0])

            gt_cam = data["camera"][0]
            gt_gravity = data["gravity"][0]
            # add gt parameters
            results["roll_gt"].append(rad2deg(gt_gravity.roll).item())
            results["pitch_gt"].append(rad2deg(gt_gravity.pitch).item())
            results["vfov_gt"].append(rad2deg(gt_cam.vfov).item())
            results["focal_gt"].append(gt_cam.f[1].item())

            results["k1_gt"].append(gt_cam.k1.item())

            if "camera" in pred:
                # pred["camera"] is a tensor of the parameters
                pred_cam = self.CameraModel(pred["camera"])

                pred_camera = pred_cam[None].undo_scale_crop(data)[0]
                gt_camera = gt_cam[None].undo_scale_crop(data)[0]

                camera_metrics = compute_camera_metrics(
                    pred_camera, gt_camera, conf.pixel_thresholds
                )

                for k, v in camera_metrics.items():
                    results[k].extend(v)

                if "focal_uncertainty" in pred:
                    focal_uncertainty = pred["focal_uncertainty"]
                    results["focal_uncertainty"].append(focal_uncertainty.item())

                if "vfov_uncertainty" in pred:
                    vfov_uncertainty = rad2deg(pred["vfov_uncertainty"])
                    results["vfov_uncertainty"].append(vfov_uncertainty.item())

            if "gravity" in pred:
                # pred["gravity"] is a tensor of the parameters
                pred_gravity = Gravity(pred["gravity"])

                gravity_metrics = compute_gravity_metrics(pred_gravity, gt_gravity)
                for k, v in gravity_metrics.items():
                    results[k].extend(v)

                if "roll_uncertainty" in pred:
                    roll_uncertainty = rad2deg(pred["roll_uncertainty"])
                    results["roll_uncertainty"].append(roll_uncertainty.item())

                if "pitch_uncertainty" in pred:
                    pitch_uncertainty = rad2deg(pred["pitch_uncertainty"])
                    results["pitch_uncertainty"].append(pitch_uncertainty.item())

                if "gravity_uncertainty" in pred:
                    gravity_uncertainty = rad2deg(pred["gravity_uncertainty"])
                    results["gravity_uncertainty"].append(gravity_uncertainty.item())

            if "up_field" in pred:
                up_err = up_error(pred["up_field"].unsqueeze(0), data["up_field"])
                results["up_error"].append(up_err.mean(axis=(1, 2)).item())
                results["up_med_error"].append(up_err.median().item())

                if "up_confidence" in pred:
                    up_confidence = pred["up_confidence"].unsqueeze(0)
                    weighted_error = (up_err * up_confidence).sum(axis=(1, 2))
                    weighted_error = weighted_error / up_confidence.sum(axis=(1, 2))
                    results["up_weighted_error"].append(weighted_error.item())

                if i < self.num_vis:
                    pred_batched = add_batch_dim(pred)
                    up_fig = visualize_batch.make_up_figure(pred=pred_batched, data=data)
                    up_fig = up_fig["up"]
                    plt.tight_layout()
                    viz2d.save_plot(save_to / f"up-{i}-{up_err.median().item():.3f}.jpg")
                    plt.close()

            if "latitude_field" in pred:
                lat_err = latitude_error(
                    pred["latitude_field"].unsqueeze(0), data["latitude_field"]
                )
                results["latitude_error"].append(lat_err.mean(axis=(1, 2)).item())
                results["latitude_med_error"].append(lat_err.median().item())

                if "latitude_confidence" in pred:
                    lat_confidence = pred["latitude_confidence"].unsqueeze(0)
                    weighted_error = (lat_err * lat_confidence).sum(axis=(1, 2))
                    weighted_error = weighted_error / lat_confidence.sum(axis=(1, 2))
                    results["latitude_weighted_error"].append(weighted_error.item())

                if i < self.num_vis:
                    pred_batched = add_batch_dim(pred)
                    lat_fig = visualize_batch.make_latitude_figure(pred=pred_batched, data=data)
                    lat_fig = lat_fig["latitude"]
                    plt.tight_layout()
                    viz2d.save_plot(save_to / f"latitude-{i}-{lat_err.median().item():.3f}.jpg")
                    plt.close()

        summaries = {}
        for k, v in results.items():
            arr = np.array(v)
            if not np.issubdtype(np.array(v).dtype, np.number):
                continue

            if k.endswith("_error") or "recall" in k or "pixel" in k:
                summaries[f"mean_{k}"] = round(np.nanmean(arr), 3)
                summaries[f"median_{k}"] = round(np.nanmedian(arr), 3)

                if any(keyword in k for keyword in ["roll", "pitch", "vfov", "gravity"]):
                    if not conf.thresholds:
                        continue

                    auc = AUCMetric(
                        elements=arr, thresholds=list(conf.thresholds), min_error=1
                    ).compute()
                    for i, t in enumerate(conf.thresholds):
                        summaries[f"auc_{k}@{t}"] = round(auc[i], 3)

        return summaries, self.get_figures(results), results


if __name__ == "__main__":
    dataset_name = Path(__file__).stem
    parser = get_eval_parser()
    args = parser.parse_intermixed_args()

    default_conf = OmegaConf.create(SimplePipeline.default_conf)

    # mingle paths
    output_dir = Path(EVAL_PATH, dataset_name)
    output_dir.mkdir(exist_ok=True, parents=True)

    name, conf = parse_eval_args(dataset_name, args, "configs/", default_conf)

    experiment_dir = output_dir / name
    experiment_dir.mkdir(exist_ok=True)

    pipeline = SimplePipeline(conf)
    s, f, r = pipeline.run(
        experiment_dir, overwrite=args.overwrite, overwrite_eval=args.overwrite_eval
    )

    pprint(s)

    if args.plot:
        for name, fig in f.items():
            fig.canvas.manager.set_window_title(name)
        plt.show()