File size: 15,163 Bytes
205a7af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
import logging
import resource
from collections import defaultdict
from pathlib import Path
from pprint import pprint
from typing import Dict, List, Tuple
import matplotlib.pyplot as plt
import numpy as np
import torch
from omegaconf import OmegaConf
from tqdm import tqdm
from siclib.datasets import get_dataset
from siclib.eval.eval_pipeline import EvalPipeline
from siclib.eval.io import get_eval_parser, load_model, parse_eval_args
from siclib.eval.utils import download_and_extract_benchmark, plot_scatter_grid
from siclib.geometry.base_camera import BaseCamera
from siclib.geometry.camera import Pinhole
from siclib.geometry.gravity import Gravity
from siclib.models.cache_loader import CacheLoader
from siclib.models.utils.metrics import (
gravity_error,
latitude_error,
pitch_error,
roll_error,
up_error,
vfov_error,
)
from siclib.settings import EVAL_PATH
from siclib.utils.conversions import rad2deg
from siclib.utils.export_predictions import export_predictions
from siclib.utils.tensor import add_batch_dim
from siclib.utils.tools import AUCMetric, set_seed
from siclib.visualization import visualize_batch, viz2d
# flake8: noqa
# mypy: ignore-errors
logger = logging.getLogger(__name__)
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (4096, rlimit[1]))
torch.set_grad_enabled(False)
def calculate_pixel_projection_error(
camera_pred: BaseCamera, camera_gt: BaseCamera, N: int = 500, distortion_only: bool = True
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Calculate the pixel projection error between two cameras.
1. Project a grid of points with the ground truth camera to the image plane.
2. Project the same grid of points with the estimated camera to the image plane.
3. Calculate the pixel distance between the ground truth and estimated points.
Args:
camera_pred (Camera): Predicted camera.
camera_gt (Camera): Ground truth camera.
N (int, optional): Number of points in the grid. Defaults to 500.
Returns:
Tuple[torch.Tensor, torch.Tensor]: Pixel distance and valid pixels.
"""
H, W = camera_gt.size.unbind(-1)
H, W = H.int(), W.int()
assert torch.allclose(
camera_gt.size, camera_pred.size
), f"Cameras must have the same size: {camera_gt.size} != {camera_pred.size}"
if distortion_only:
params = camera_gt._data.clone()
params[..., -2:] = camera_pred._data[..., -2:]
CameraModel = type(camera_gt)
camera_pred = CameraModel(params)
x_gt, y_gt = torch.meshgrid(
torch.linspace(0, H - 1, N), torch.linspace(0, W - 1, N), indexing="xy"
)
xy = torch.stack((x_gt, y_gt), dim=-1).reshape(-1, 2)
camera_pin_gt = camera_gt.pinhole()
uv_pin, _ = camera_pin_gt.image2world(xy)
# gt
xy_undist_gt, valid_dist_gt = camera_gt.world2image(uv_pin)
# pred
xy_undist, valid_dist = camera_pred.world2image(uv_pin)
valid = valid_dist_gt & valid_dist
dist = (xy_undist - xy_undist_gt) ** 2
dist = (dist.sum(-1)).sqrt()
return dist[valid_dist_gt], valid[valid_dist_gt]
def compute_camera_metrics(
camera_pred: BaseCamera, camera_gt: BaseCamera, thresholds: List[float]
) -> Dict[str, float]:
results = defaultdict(list)
results["vfov"].append(rad2deg(camera_pred.vfov).item())
results["vfov_error"].append(vfov_error(camera_pred, camera_gt).item())
results["focal"].append(camera_pred.f[..., 1].item())
focal_error = torch.abs(camera_pred.f[..., 1] - camera_gt.f[..., 1])
results["focal_error"].append(focal_error.item())
rel_focal_error = torch.abs(camera_pred.f[..., 1] - camera_gt.f[..., 1]) / camera_gt.f[..., 1]
results["rel_focal_error"].append(rel_focal_error.item())
if hasattr(camera_pred, "k1"):
results["k1"].append(camera_pred.k1.item())
k1_error = torch.abs(camera_pred.k1 - camera_gt.k1)
results["k1_error"].append(k1_error.item())
if thresholds is None:
return results
err, valid = calculate_pixel_projection_error(camera_pred, camera_gt, distortion_only=False)
for th in thresholds:
results[f"pixel_projection_error@{th}"].append(
((err[valid] < th).sum() / len(valid)).float().item()
)
err, valid = calculate_pixel_projection_error(camera_pred, camera_gt, distortion_only=True)
for th in thresholds:
results[f"pixel_distortion_error@{th}"].append(
((err[valid] < th).sum() / len(valid)).float().item()
)
return results
def compute_gravity_metrics(gravity_pred: Gravity, gravity_gt: Gravity) -> Dict[str, float]:
results = defaultdict(list)
results["roll"].append(rad2deg(gravity_pred.roll).item())
results["pitch"].append(rad2deg(gravity_pred.pitch).item())
results["roll_error"].append(roll_error(gravity_pred, gravity_gt).item())
results["pitch_error"].append(pitch_error(gravity_pred, gravity_gt).item())
results["gravity_error"].append(gravity_error(gravity_pred[None], gravity_gt[None]).item())
return results
class SimplePipeline(EvalPipeline):
default_conf = {
"data": {},
"model": {},
"eval": {
"thresholds": [1, 5, 10],
"pixel_thresholds": [0.5, 1, 3, 5],
"num_vis": 10,
"verbose": True,
},
"url": None, # url to benchmark.zip
}
export_keys = [
"camera",
"gravity",
]
optional_export_keys = [
"focal_uncertainty",
"vfov_uncertainty",
"roll_uncertainty",
"pitch_uncertainty",
"gravity_uncertainty",
"up_field",
"up_confidence",
"latitude_field",
"latitude_confidence",
]
def _init(self, conf):
self.verbose = conf.eval.verbose
self.num_vis = self.conf.eval.num_vis
self.CameraModel = Pinhole
if conf.url is not None:
ds_dir = Path(conf.data.dataset_dir)
download_and_extract_benchmark(ds_dir.name, conf.url, ds_dir.parent)
@classmethod
def get_dataloader(cls, data_conf=None, batch_size=None):
"""Returns a data loader with samples for each eval datapoint"""
data_conf = data_conf or cls.default_conf["data"]
if batch_size is not None:
data_conf["test_batch_size"] = batch_size
do_shuffle = data_conf["test_batch_size"] > 1
dataset = get_dataset(data_conf["name"])(data_conf)
return dataset.get_data_loader("test", shuffle=do_shuffle)
def get_predictions(self, experiment_dir, model=None, overwrite=False):
"""Export a prediction file for each eval datapoint"""
# set_seed(0)
pred_file = experiment_dir / "predictions.h5"
if not pred_file.exists() or overwrite:
if model is None:
model = load_model(self.conf.model, self.conf.checkpoint)
export_predictions(
self.get_dataloader(self.conf.data),
model,
pred_file,
keys=self.export_keys,
optional_keys=self.optional_export_keys,
verbose=self.verbose,
)
return pred_file
def get_figures(self, results):
figures = {}
if self.num_vis == 0:
return figures
gl = ["up", "latitude"]
rpf = ["roll", "pitch", "vfov"]
# check if rpf in results
if all(k in results for k in rpf):
x_keys = [f"{k}_gt" for k in rpf]
# gt vs error
y_keys = [f"{k}_error" for k in rpf]
fig, _ = plot_scatter_grid(results, x_keys, y_keys, show_means=False)
figures |= {"rpf_gt_error": fig}
# gt vs pred
y_keys = [f"{k}" for k in rpf]
fig, _ = plot_scatter_grid(results, x_keys, y_keys, diag=True, show_means=False)
figures |= {"rpf_gt_pred": fig}
if all(f"{k}_error" in results for k in gl):
x_keys = [f"{k}_gt" for k in rpf]
y_keys = [f"{k}_error" for k in gl]
fig, _ = plot_scatter_grid(results, x_keys, y_keys, show_means=False)
figures |= {"gl_gt_error": fig}
return figures
def run_eval(self, loader, pred_file):
conf = self.conf.eval
results = defaultdict(list)
save_to = Path(pred_file).parent / "figures"
if not save_to.exists() and self.num_vis > 0:
save_to.mkdir()
cache_loader = CacheLoader({"path": str(pred_file), "collate": None}).eval()
if not self.verbose:
logger.info(f"Evaluating {pred_file}")
for i, data in enumerate(
tqdm(loader, desc="Evaluating", total=len(loader), ncols=80, disable=not self.verbose)
):
# NOTE: data is batched but pred is not
pred = cache_loader(data)
results["names"].append(data["name"][0])
gt_cam = data["camera"][0]
gt_gravity = data["gravity"][0]
# add gt parameters
results["roll_gt"].append(rad2deg(gt_gravity.roll).item())
results["pitch_gt"].append(rad2deg(gt_gravity.pitch).item())
results["vfov_gt"].append(rad2deg(gt_cam.vfov).item())
results["focal_gt"].append(gt_cam.f[1].item())
results["k1_gt"].append(gt_cam.k1.item())
if "camera" in pred:
# pred["camera"] is a tensor of the parameters
pred_cam = self.CameraModel(pred["camera"])
pred_camera = pred_cam[None].undo_scale_crop(data)[0]
gt_camera = gt_cam[None].undo_scale_crop(data)[0]
camera_metrics = compute_camera_metrics(
pred_camera, gt_camera, conf.pixel_thresholds
)
for k, v in camera_metrics.items():
results[k].extend(v)
if "focal_uncertainty" in pred:
focal_uncertainty = pred["focal_uncertainty"]
results["focal_uncertainty"].append(focal_uncertainty.item())
if "vfov_uncertainty" in pred:
vfov_uncertainty = rad2deg(pred["vfov_uncertainty"])
results["vfov_uncertainty"].append(vfov_uncertainty.item())
if "gravity" in pred:
# pred["gravity"] is a tensor of the parameters
pred_gravity = Gravity(pred["gravity"])
gravity_metrics = compute_gravity_metrics(pred_gravity, gt_gravity)
for k, v in gravity_metrics.items():
results[k].extend(v)
if "roll_uncertainty" in pred:
roll_uncertainty = rad2deg(pred["roll_uncertainty"])
results["roll_uncertainty"].append(roll_uncertainty.item())
if "pitch_uncertainty" in pred:
pitch_uncertainty = rad2deg(pred["pitch_uncertainty"])
results["pitch_uncertainty"].append(pitch_uncertainty.item())
if "gravity_uncertainty" in pred:
gravity_uncertainty = rad2deg(pred["gravity_uncertainty"])
results["gravity_uncertainty"].append(gravity_uncertainty.item())
if "up_field" in pred:
up_err = up_error(pred["up_field"].unsqueeze(0), data["up_field"])
results["up_error"].append(up_err.mean(axis=(1, 2)).item())
results["up_med_error"].append(up_err.median().item())
if "up_confidence" in pred:
up_confidence = pred["up_confidence"].unsqueeze(0)
weighted_error = (up_err * up_confidence).sum(axis=(1, 2))
weighted_error = weighted_error / up_confidence.sum(axis=(1, 2))
results["up_weighted_error"].append(weighted_error.item())
if i < self.num_vis:
pred_batched = add_batch_dim(pred)
up_fig = visualize_batch.make_up_figure(pred=pred_batched, data=data)
up_fig = up_fig["up"]
plt.tight_layout()
viz2d.save_plot(save_to / f"up-{i}-{up_err.median().item():.3f}.jpg")
plt.close()
if "latitude_field" in pred:
lat_err = latitude_error(
pred["latitude_field"].unsqueeze(0), data["latitude_field"]
)
results["latitude_error"].append(lat_err.mean(axis=(1, 2)).item())
results["latitude_med_error"].append(lat_err.median().item())
if "latitude_confidence" in pred:
lat_confidence = pred["latitude_confidence"].unsqueeze(0)
weighted_error = (lat_err * lat_confidence).sum(axis=(1, 2))
weighted_error = weighted_error / lat_confidence.sum(axis=(1, 2))
results["latitude_weighted_error"].append(weighted_error.item())
if i < self.num_vis:
pred_batched = add_batch_dim(pred)
lat_fig = visualize_batch.make_latitude_figure(pred=pred_batched, data=data)
lat_fig = lat_fig["latitude"]
plt.tight_layout()
viz2d.save_plot(save_to / f"latitude-{i}-{lat_err.median().item():.3f}.jpg")
plt.close()
summaries = {}
for k, v in results.items():
arr = np.array(v)
if not np.issubdtype(np.array(v).dtype, np.number):
continue
if k.endswith("_error") or "recall" in k or "pixel" in k:
summaries[f"mean_{k}"] = round(np.nanmean(arr), 3)
summaries[f"median_{k}"] = round(np.nanmedian(arr), 3)
if any(keyword in k for keyword in ["roll", "pitch", "vfov", "gravity"]):
if not conf.thresholds:
continue
auc = AUCMetric(
elements=arr, thresholds=list(conf.thresholds), min_error=1
).compute()
for i, t in enumerate(conf.thresholds):
summaries[f"auc_{k}@{t}"] = round(auc[i], 3)
return summaries, self.get_figures(results), results
if __name__ == "__main__":
dataset_name = Path(__file__).stem
parser = get_eval_parser()
args = parser.parse_intermixed_args()
default_conf = OmegaConf.create(SimplePipeline.default_conf)
# mingle paths
output_dir = Path(EVAL_PATH, dataset_name)
output_dir.mkdir(exist_ok=True, parents=True)
name, conf = parse_eval_args(dataset_name, args, "configs/", default_conf)
experiment_dir = output_dir / name
experiment_dir.mkdir(exist_ok=True)
pipeline = SimplePipeline(conf)
s, f, r = pipeline.run(
experiment_dir, overwrite=args.overwrite, overwrite_eval=args.overwrite_eval
)
pprint(s)
if args.plot:
for name, fig in f.items():
fig.canvas.manager.set_window_title(name)
plt.show()
|