File size: 3,770 Bytes
205a7af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import string

import h5py
import torch

from siclib.datasets.base_dataset import collate
from siclib.models.base_model import BaseModel
from siclib.settings import DATA_PATH
from siclib.utils.tensor import batch_to_device

# flake8: noqa
# mypy: ignore-errors


def pad_line_features(pred, seq_l: int = None):
    raise NotImplementedError


def recursive_load(grp, pkeys):
    return {
        k: (
            torch.from_numpy(grp[k].__array__())
            if isinstance(grp[k], h5py.Dataset)
            else recursive_load(grp[k], list(grp.keys()))
        )
        for k in pkeys
    }


class CacheLoader(BaseModel):
    default_conf = {
        "path": "???",  # can be a format string like exports/{scene}/
        "data_keys": None,  # load all keys
        "device": None,  # load to same device as data
        "trainable": False,
        "add_data_path": True,
        "collate": True,
        "scale": ["keypoints"],
        "padding_fn": None,
        "padding_length": None,  # required for batching!
        "numeric_type": "float32",  # [None, "float16", "float32", "float64"]
    }

    required_data_keys = ["name"]  # we need an identifier

    def _init(self, conf):
        self.hfiles = {}
        self.padding_fn = conf.padding_fn
        if self.padding_fn is not None:
            self.padding_fn = eval(self.padding_fn)
        self.numeric_dtype = {
            None: None,
            "float16": torch.float16,
            "float32": torch.float32,
            "float64": torch.float64,
        }[conf.numeric_type]

    def _forward(self, data):  # sourcery skip: low-code-quality
        preds = []
        device = self.conf.device
        if not device:
            if devices := {v.device for v in data.values() if isinstance(v, torch.Tensor)}:
                assert len(devices) == 1
                device = devices.pop()

            else:
                device = "cpu"

        var_names = [x[1] for x in string.Formatter().parse(self.conf.path) if x[1]]
        for i, name in enumerate(data["name"]):
            fpath = self.conf.path.format(**{k: data[k][i] for k in var_names})
            if self.conf.add_data_path:
                fpath = DATA_PATH / fpath
            hfile = h5py.File(str(fpath), "r")
            grp = hfile[name]
            pkeys = self.conf.data_keys if self.conf.data_keys is not None else grp.keys()
            pred = recursive_load(grp, pkeys)
            if self.numeric_dtype is not None:
                pred = {
                    k: (
                        v
                        if not isinstance(v, torch.Tensor) or not torch.is_floating_point(v)
                        else v.to(dtype=self.numeric_dtype)
                    )
                    for k, v in pred.items()
                }
            pred = batch_to_device(pred, device)
            for k, v in pred.items():
                for pattern in self.conf.scale:
                    if k.startswith(pattern):
                        view_idx = k.replace(pattern, "")
                        scales = (
                            data["scales"]
                            if len(view_idx) == 0
                            else data[f"view{view_idx}"]["scales"]
                        )
                        pred[k] = pred[k] * scales[i]
            # use this function to fix number of keypoints etc.
            if self.padding_fn is not None:
                pred = self.padding_fn(pred, self.conf.padding_length)
            preds.append(pred)
            hfile.close()
        if self.conf.collate:
            return batch_to_device(collate(preds), device)
        assert len(preds) == 1
        return batch_to_device(preds[0], device)

    def loss(self, pred, data):
        raise NotImplementedError