File size: 7,859 Bytes
205a7af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
"""Implementation of MSCAN from SegNeXt: Rethinking Convolutional Attention Design for Semantic 
Segmentation (NeurIPS 2022)

based on: https://github.com/Visual-Attention-Network/SegNeXt
"""

import torch
import torch.nn as nn
from torch.nn.modules.utils import _pair as to_2tuple

from siclib.models import BaseModel
from siclib.models.utils.modules import DropPath, DWConv

# flake8: noqa
# mypy: ignore-errors


class Mlp(nn.Module):
    def __init__(
        self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0
    ):
        """Initialize the MLP."""
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
        self.dwconv = DWConv(hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        """Forward pass."""
        x = self.fc1(x)

        x = self.dwconv(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)

        return x


class StemConv(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(StemConv, self).__init__()

        self.proj = nn.Sequential(
            nn.Conv2d(
                in_channels, out_channels // 2, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)
            ),
            nn.BatchNorm2d(out_channels // 2),
            nn.GELU(),
            nn.Conv2d(
                out_channels // 2, out_channels, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)
            ),
            nn.BatchNorm2d(out_channels),
        )

    def forward(self, x):
        x = self.proj(x)
        _, _, H, W = x.size()
        x = x.flatten(2).transpose(1, 2)
        return x, H, W


class AttentionModule(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.conv0 = nn.Conv2d(dim, dim, 5, padding=2, groups=dim)
        self.conv0_1 = nn.Conv2d(dim, dim, (1, 7), padding=(0, 3), groups=dim)
        self.conv0_2 = nn.Conv2d(dim, dim, (7, 1), padding=(3, 0), groups=dim)

        self.conv1_1 = nn.Conv2d(dim, dim, (1, 11), padding=(0, 5), groups=dim)
        self.conv1_2 = nn.Conv2d(dim, dim, (11, 1), padding=(5, 0), groups=dim)

        self.conv2_1 = nn.Conv2d(dim, dim, (1, 21), padding=(0, 10), groups=dim)
        self.conv2_2 = nn.Conv2d(dim, dim, (21, 1), padding=(10, 0), groups=dim)
        self.conv3 = nn.Conv2d(dim, dim, 1)

    def forward(self, x):
        u = x.clone()
        attn = self.conv0(x)

        attn_0 = self.conv0_1(attn)
        attn_0 = self.conv0_2(attn_0)

        attn_1 = self.conv1_1(attn)
        attn_1 = self.conv1_2(attn_1)

        attn_2 = self.conv2_1(attn)
        attn_2 = self.conv2_2(attn_2)
        attn = attn + attn_0 + attn_1 + attn_2

        attn = self.conv3(attn)

        return attn * u


class SpatialAttention(nn.Module):
    def __init__(self, d_model):
        super().__init__()
        self.d_model = d_model
        self.proj_1 = nn.Conv2d(d_model, d_model, 1)
        self.activation = nn.GELU()
        self.spatial_gating_unit = AttentionModule(d_model)
        self.proj_2 = nn.Conv2d(d_model, d_model, 1)

    def forward(self, x):
        shorcut = x.clone()
        x = self.proj_1(x)
        x = self.activation(x)
        x = self.spatial_gating_unit(x)
        x = self.proj_2(x)
        x = x + shorcut
        return x


class Block(nn.Module):
    def __init__(
        self,
        dim,
        mlp_ratio=4.0,
        drop=0.0,
        drop_path=0.0,
        act_layer=nn.GELU,
    ):
        super().__init__()
        self.norm1 = nn.BatchNorm2d(dim)
        self.attn = SpatialAttention(dim)
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        self.norm2 = nn.BatchNorm2d(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(
            in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop
        )
        layer_scale_init_value = 1e-2
        self.layer_scale_1 = nn.Parameter(
            layer_scale_init_value * torch.ones((dim)), requires_grad=True
        )
        self.layer_scale_2 = nn.Parameter(
            layer_scale_init_value * torch.ones((dim)), requires_grad=True
        )

    def forward(self, x, H, W):
        B, N, C = x.shape
        x = x.permute(0, 2, 1).view(B, C, H, W)
        x = x + self.drop_path(
            self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * self.attn(self.norm1(x))
        )
        x = x + self.drop_path(
            self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * self.mlp(self.norm2(x))
        )
        x = x.view(B, C, N).permute(0, 2, 1)
        return x


class OverlapPatchEmbed(nn.Module):
    """Image to Patch Embedding"""

    def __init__(self, patch_size=7, stride=4, in_chans=3, embed_dim=768):
        super().__init__()
        patch_size = to_2tuple(patch_size)

        self.proj = nn.Conv2d(
            in_chans,
            embed_dim,
            kernel_size=patch_size,
            stride=stride,
            padding=(patch_size[0] // 2, patch_size[1] // 2),
        )
        self.norm = nn.BatchNorm2d(embed_dim)

    def forward(self, x):
        x = self.proj(x)
        _, _, H, W = x.shape
        x = self.norm(x)

        x = x.flatten(2).transpose(1, 2)

        return x, H, W


class MSCAN(BaseModel):
    default_conf = {
        "in_channels": 3,
        "embed_dims": [64, 128, 320, 512],
        "mlp_ratios": [8, 8, 4, 4],
        "drop_rate": 0.0,
        "drop_path_rate": 0.1,
        "depths": [3, 3, 12, 3],
        "num_stages": 4,
    }

    required_data_keys = ["image"]

    def _init(self, conf):
        self.depths = conf.depths
        self.num_stages = conf.num_stages

        # stochastic depth decay rule
        dpr = [x.item() for x in torch.linspace(0, conf.drop_path_rate, sum(conf.depths))]
        cur = 0

        for i in range(conf.num_stages):
            if i == 0:
                patch_embed = StemConv(3, conf.embed_dims[0])
            else:
                patch_embed = OverlapPatchEmbed(
                    patch_size=7 if i == 0 else 3,
                    stride=4 if i == 0 else 2,
                    in_chans=conf.in_chans if i == 0 else conf.embed_dims[i - 1],
                    embed_dim=conf.embed_dims[i],
                )

            block = nn.ModuleList(
                [
                    Block(
                        dim=conf.embed_dims[i],
                        mlp_ratio=conf.mlp_ratios[i],
                        drop=conf.drop_rate,
                        drop_path=dpr[cur + j],
                    )
                    for j in range(conf.depths[i])
                ]
            )
            norm = nn.LayerNorm(conf.embed_dims[i])
            cur += conf.depths[i]

            setattr(self, f"patch_embed{i + 1}", patch_embed)
            setattr(self, f"block{i + 1}", block)
            setattr(self, f"norm{i + 1}", norm)

    def _forward(self, data):
        img = data["image"]
        # rgb -> bgr and from [0, 1] to [0, 255]
        x = img[:, [2, 1, 0], :, :] * 255.0

        B = x.shape[0]
        outs = []

        for i in range(self.num_stages):
            patch_embed = getattr(self, f"patch_embed{i + 1}")
            block = getattr(self, f"block{i + 1}")
            norm = getattr(self, f"norm{i + 1}")
            x, H, W = patch_embed(x)
            for blk in block:
                x = blk(x, H, W)
            x = norm(x)
            x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
            outs.append(x)

        return {"features": outs}

    def loss(self, pred, data):
        """Compute the loss."""
        raise NotImplementedError