File size: 11,147 Bytes
205a7af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import logging
from copy import deepcopy
from typing import Tuple

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from torch.nn import Identity

from siclib.geometry.camera import SimpleRadial
from siclib.geometry.gravity import Gravity
from siclib.models.base_model import BaseModel
from siclib.models.utils.metrics import dist_error, pitch_error, roll_error, vfov_error
from siclib.models.utils.modules import _DenseBlock, _Transition
from siclib.utils.conversions import deg2rad, pitch2rho, rho2pitch

logger = logging.getLogger(__name__)

# flake8: noqa
# mypy: ignore-errors


def get_centers_and_edges(min: float, max: float, num_bins: int) -> Tuple[np.ndarray, torch.Tensor]:
    centers = torch.linspace(min, max + ((max - min) / (num_bins - 1)), num_bins + 1).float()
    edges = centers.detach() - ((centers.detach()[1] - centers[0]) / 2.0)
    return centers, edges


class DeepCalib(BaseModel):
    default_conf = {
        "name": "densenet",
        "model": "densenet161",
        "loss": "NLL",
        "num_bins": 256,
        "freeze_batch_normalization": False,
        "model": "densenet161",
        "pretrained": True,  # whether to use ImageNet weights
        "heads": ["roll", "rho", "vfov", "k1_hat"],
        "flip": [],  # keys of predictions to flip the sign of
        "rpf_scales": [1, 1, 1],
        "bounds": {
            "roll": [-45, 45],
            "rho": [-1, 1],
            "vfov": [20, 105],
            "k1_hat": [-0.7, 0.7],
        },
        "use_softamax": False,
    }

    mean = [0.485, 0.456, 0.406]
    std = [0.229, 0.224, 0.225]

    strict_conf = False

    required_data_keys = ["image", "image_size"]

    def _init(self, conf):
        self.is_classification = True if self.conf.loss in ["NLL"] else False

        self.num_bins = conf.num_bins

        self.roll_centers, self.roll_edges = get_centers_and_edges(
            deg2rad(conf.bounds.roll[0]), deg2rad(conf.bounds.roll[1]), self.num_bins
        )

        self.rho_centers, self.rho_edges = get_centers_and_edges(
            conf.bounds.rho[0], conf.bounds.rho[1], self.num_bins
        )

        self.fov_centers, self.fov_edges = get_centers_and_edges(
            deg2rad(conf.bounds.vfov[0]), deg2rad(conf.bounds.vfov[1]), self.num_bins
        )

        self.k1_hat_centers, self.k1_hat_edges = get_centers_and_edges(
            conf.bounds.k1_hat[0], conf.bounds.k1_hat[1], self.num_bins
        )

        Model = getattr(torchvision.models, conf.model)
        weights = "DEFAULT" if self.conf.pretrained else None
        self.model = Model(weights=weights)

        layers = []

        # 2208 for 161 layers. 1024 for 121
        num_features = self.model.classifier.in_features
        head_layers = 3
        layers.append(_Transition(num_features, num_features // 2))
        num_features = num_features // 2
        growth_rate = 32
        layers.append(
            _DenseBlock(
                num_layers=head_layers,
                num_input_features=num_features,
                growth_rate=growth_rate,
                bn_size=4,
                drop_rate=0,
            )
        )
        layers.append(nn.BatchNorm2d(num_features + head_layers * growth_rate))
        layers.append(nn.ReLU())
        layers.append(nn.AdaptiveAvgPool2d((1, 1)))
        layers.append(nn.Flatten())
        layers.append(nn.Linear(num_features + head_layers * growth_rate, 512))
        layers.append(nn.ReLU())
        self.model.classifier = Identity()
        self.model.features.norm5 = Identity()

        if self.is_classification:
            layers.append(nn.Linear(512, self.num_bins))
            layers.append(nn.LogSoftmax(dim=1))
        else:
            layers.append(nn.Linear(512, 1))
            layers.append(nn.Tanh())

        self.roll_head = nn.Sequential(*deepcopy(layers))
        self.rho_head = nn.Sequential(*deepcopy(layers))
        self.vfov_head = nn.Sequential(*deepcopy(layers))
        self.k1_hat_head = nn.Sequential(*deepcopy(layers))

    def bins_to_val(self, centers, pred):
        if centers.device != pred.device:
            centers = centers.to(pred.device)

        if not self.conf.use_softamax:
            return centers[pred.argmax(1)]

        beta = 1e-0
        pred_softmax = F.softmax(pred / beta, dim=1)
        weighted_centers = centers[:-1].unsqueeze(0) * pred_softmax
        val = weighted_centers.sum(dim=1)
        return val

    def _forward(self, data):
        image = data["image"]
        mean, std = image.new_tensor(self.mean), image.new_tensor(self.std)
        image = (image - mean[:, None, None]) / std[:, None, None]
        shared_features = self.model.features(image)
        pred = {}

        if "roll" in self.conf.heads:
            pred["roll"] = self.roll_head(shared_features)
        if "rho" in self.conf.heads:
            pred["rho"] = self.rho_head(shared_features)
        if "vfov" in self.conf.heads:
            pred["vfov"] = self.vfov_head(shared_features)
            if "vfov" in self.conf.flip:
                pred["vfov"] = pred["vfov"] * -1
        if "k1_hat" in self.conf.heads:
            pred["k1_hat"] = self.k1_hat_head(shared_features)

        size = data["image_size"]
        w, h = size[:, 0], size[:, 1]

        if self.is_classification:
            parameters = {
                "roll": self.bins_to_val(self.roll_centers, pred["roll"]),
                "rho": self.bins_to_val(self.rho_centers, pred["rho"]),
                "vfov": self.bins_to_val(self.fov_centers, pred["vfov"]),
                "k1_hat": self.bins_to_val(self.k1_hat_centers, pred["k1_hat"]),
                "width": w,
                "height": h,
            }

            for k in self.conf.flip:
                parameters[k] = parameters[k] * -1

            for i, k in enumerate(["roll", "rho", "vfov"]):
                parameters[k] = parameters[k] * self.conf.rpf_scales[i]

            camera = SimpleRadial.from_dict(parameters)

            roll, pitch = parameters["roll"], rho2pitch(parameters["rho"], camera.f[..., 1], h)
            gravity = Gravity.from_rp(roll, pitch)

        else:  # regression
            if "roll" in self.conf.heads:
                pred["roll"] = pred["roll"] * deg2rad(45)
            if "vfov" in self.conf.heads:
                pred["vfov"] = (pred["vfov"] + 1) * deg2rad((105 - 20) / 2 + 20)

            camera = SimpleRadial.from_dict(pred | {"width": w, "height": h})
            gravity = Gravity.from_rp(pred["roll"], pred["pitch"])

        return pred | {"camera": camera, "gravity": gravity}

    def loss(self, pred, data):
        loss = {"total": 0}
        if self.conf.loss == "Huber":
            loss_fn = nn.HuberLoss(reduction="none")
        elif self.conf.loss == "L1":
            loss_fn = nn.L1Loss(reduction="none")
        elif self.conf.loss == "L2":
            loss_fn = nn.MSELoss(reduction="none")
        elif self.conf.loss == "NLL":
            loss_fn = nn.NLLLoss(reduction="none")

        gt_cam = data["camera"]

        if "roll" in self.conf.heads:
            # nbins softmax values if classification, else scalar value
            gt_roll = data["gravity"].roll.float()
            pred_roll = pred["roll"].float()

            if gt_roll.device != self.roll_edges.device:
                self.roll_edges = self.roll_edges.to(gt_roll.device)
                self.roll_centers = self.roll_centers.to(gt_roll.device)

            if self.is_classification:
                gt_roll = (
                    torch.bucketize(gt_roll.contiguous(), self.roll_edges) - 1
                )  # converted to class

                assert (gt_roll >= 0).all(), gt_roll
                assert (gt_roll < self.num_bins).all(), gt_roll
            else:
                assert pred_roll.dim() == gt_roll.dim()

            loss_roll = loss_fn(pred_roll, gt_roll)
            loss["roll"] = loss_roll
            loss["total"] += loss_roll

        if "rho" in self.conf.heads:
            gt_rho = pitch2rho(data["gravity"].pitch, gt_cam.f[..., 1], gt_cam.size[..., 1]).float()
            pred_rho = pred["rho"].float()

            if gt_rho.device != self.rho_edges.device:
                self.rho_edges = self.rho_edges.to(gt_rho.device)
                self.rho_centers = self.rho_centers.to(gt_rho.device)

            if self.is_classification:
                gt_rho = torch.bucketize(gt_rho.contiguous(), self.rho_edges) - 1

                assert (gt_rho >= 0).all(), gt_rho
                assert (gt_rho < self.num_bins).all(), gt_rho
            else:
                assert pred_rho.dim() == gt_rho.dim()

            # print(f"Rho: {gt_rho.shape}, {pred_rho.shape}")
            loss_rho = loss_fn(pred_rho, gt_rho)
            loss["rho"] = loss_rho
            loss["total"] += loss_rho

        if "vfov" in self.conf.heads:
            gt_vfov = gt_cam.vfov.float()
            pred_vfov = pred["vfov"].float()

            if gt_vfov.device != self.fov_edges.device:
                self.fov_edges = self.fov_edges.to(gt_vfov.device)
                self.fov_centers = self.fov_centers.to(gt_vfov.device)

            if self.is_classification:
                gt_vfov = torch.bucketize(gt_vfov.contiguous(), self.fov_edges) - 1

                assert (gt_vfov >= 0).all(), gt_vfov
                assert (gt_vfov < self.num_bins).all(), gt_vfov
            else:
                min_vfov = deg2rad(self.conf.bounds.vfov[0])
                max_vfov = deg2rad(self.conf.bounds.vfov[1])
                gt_vfov = (2 * (gt_vfov - min_vfov) / (max_vfov - min_vfov)) - 1
                assert pred_vfov.dim() == gt_vfov.dim()

            loss_vfov = loss_fn(pred_vfov, gt_vfov)
            loss["vfov"] = loss_vfov
            loss["total"] += loss_vfov

        if "k1_hat" in self.conf.heads:
            gt_k1_hat = data["camera"].k1_hat.float()
            pred_k1_hat = pred["k1_hat"].float()

            if gt_k1_hat.device != self.k1_hat_edges.device:
                self.k1_hat_edges = self.k1_hat_edges.to(gt_k1_hat.device)
                self.k1_hat_centers = self.k1_hat_centers.to(gt_k1_hat.device)

            if self.is_classification:
                gt_k1_hat = torch.bucketize(gt_k1_hat.contiguous(), self.k1_hat_edges) - 1

                assert (gt_k1_hat >= 0).all(), gt_k1_hat
                assert (gt_k1_hat < self.num_bins).all(), gt_k1_hat
            else:
                assert pred_k1_hat.dim() == gt_k1_hat.dim()

            loss_k1_hat = loss_fn(pred_k1_hat, gt_k1_hat)
            loss["k1_hat"] = loss_k1_hat
            loss["total"] += loss_k1_hat

        return loss, self.metrics(pred, data)

    def metrics(self, pred, data):
        pred_cam, gt_cam = pred["camera"], data["camera"]
        pred_gravity, gt_gravity = pred["gravity"], data["gravity"]

        return {
            "roll_error": roll_error(pred_gravity, gt_gravity),
            "pitch_error": pitch_error(pred_gravity, gt_gravity),
            "vfov_error": vfov_error(pred_cam, gt_cam),
            "k1_error": dist_error(pred_cam, gt_cam),
        }